时间限制:1秒 空间限制:32768K 热度指数:335948
本题知识点: 穷举
题目描述
把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。
方法:
所谓的一个数m是另一个数n的因子,是指n能被m整除,也就是n%m==0。根据丑数的定义,丑数只能被2、3和5整除。根据丑数的定义,丑数应该是另一个丑数乘以2、3或者5的结果(1除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数,每一个丑数都是前面的丑数乘以2、3或者5得到的。
这个思路的关键问题在于怎样保证数组里面的丑数是排好序的。对乘以2而言,肯定存在某一个丑数T2,排在它之前的每一个丑数乘以2得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以乘以2得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,去更新这个T2。对乘以3和5而言,也存在着同样的T3和T5。
代码如下:
class Solution {
public:
int GetUglyNumber_Solution(int index) {
vector<int>res(index);
if(index<6) return index;
for(int i=0;i<6;i++){
res[i]=i+1;
}
int t2=3,t3=2,t5=1;
for(int i=6;i<index;i++){
res[i]=min(res[t2]*2,min(res[t3]*3,res[t5]*5));
while(res[i]>=res[t2]*2){
t2++;
}
while(res[i]>=res[t3]*3){
t3++;
}
while(res[i]>=res[t5]*5){
t5++;
}
}
return res[index-1];
}
};