背景介绍
提到label smoothing(标签平滑),首先介绍一下什么是hard label和soft label.
简单来说,hard label就是非1即0,不存在既可能是A也可能是B的情况,soft label则不同,它并不要求所有的“精力”全部倾向一个,允许模棱两可的状态,比如这幅画有40%的概率是猫, 60%的概率是狗。
什么时候会用到
标签平滑在机器学习或者深度学习中可以看作是一种正则化的技巧。它能提高分类任务中模型的泛化性能和准确率,缓解数据分布不平衡的问题。
为什么说能提高模型的泛化性能和准确率呢,我们需要从公式角度出发理解:
对于hard label的情况,softmax之后输出的结果为:
![在这里插入图片描述](https://img-blog.csdnimg.cn/978a0cc999![在这里插入图
可以看出,如果要想损失的loss为0,那么极限条件就是让正样本的输出值为1,负样本的输出值为0,而要想达到负样本的概率为0,