求解分饼干问题

动态规划

创建(len + 1) * n的二维数组dp[][],其中dp[i][j]表示前i位数中对n整除余数为j的可能的前i位数值总数,len表示数字的长度,则把数组dp[][]的所有元素的值都算出来,其中dp[len][0]即为所求答案。首先,把dp[1][i],i = 0, 1, 2, ..., n - 1求出来,然后dp[i][newj] += dp[i - 1][j],其中newj = (10 * j + k[i + 1] - '0') % n。

#include <iostream>
using namespace std;

int main(void)
{
    char k[100];
    int n, len;
    cin >> k;
    cin >> n;

    len = strlen(k);            //数字k的长度
    int** dp = new int* [len + 1];      //创建(len + 1) * n的二维数组dp[][],其中dp[i][j]表示前i位数中对n整除余数为j的可能的前i位数值总数
    for (int i = 0; i < len + 1; i++)
        dp[i] = new int[n];

    for (int i = 0; i < len + 1; i++)       //初始化,使数组的所有元素都为0
    {
        for (int j = 0; j < n; j++)
            dp[i][j] = 0;
    }

    //求dp[1][i],i = 0, 1, 2, ..., n - 1
    if (k[0] == 'X')        //当最高位数为‘X’时
    {
        for (int i = 0; i <= 9; i++)    //对‘X’的所有可能取值都考虑进去
        {
            dp[1][i % n]++;     
        }
    }
    else            //当最高位为确定的数时
    {
        int num = k[0] - '0';
        dp[1][num % n]++;
    }

    for (int i = 1; i < len; i++)
    {
        for (int j = 0; j < n; j++)
        {
            if (k[i + 1] == 'X')
            {
                int newj;
                for (int m = 0; m <= 9; m++)
                {
                    newj = (10 * j + m) % n;
                    dp[i + 1][newj] += dp[i][j];        //转移矩阵
                }
            }
            else
            {
                int newj = (10 * j + k[i + 1] - '0') % n;
                dp[i + 1][newj] += dp[i][j];
            }
        }
    }

    cout << dp[len][0] << endl;

    return 0;
}

运行结果:

实验课程:算法析与设计 实验称:用动态规划求解资源问题 (验证型实验) 实验目标: (1)掌握用动态规划方法求解实际问题的基本思路。 (2)进一步理解动态规划方法的实质,巩固设计动态规划算法的基本步骤。 实验任务: (1)设计动态规划算法求解资源问题,给出算法的非形式描述。 (2) 在Windows环境下用C 语言实现该算法。计算10个实例,每个实例中n=30, m=10, Ci j为随机产生于范围(0,103)内的整数。记录各实例的数据及执行结果(即最优配方案、最优配方案的值)、运行时间。 (3)从理论上算法的时间和空间复杂度,并由此解释相应的实验结果。 实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1) 根据实验目标,明确实验的具体任务; (2) 析资源问题,获得计算其最优值的递推计算公式; (3) 设计求解问题动态规划算法,并编写程序实现算法; (4) 设计实验数据并运行程序、记录运行的结果; (5) 算法的时间和空间复杂度,并由此解释释相应的实验结果; 问题析: 问题描述: 某厂根据计划安排,拟将n台相同的设备配给m个车间,各车间获得这种设备后,可以为国家提供盈利Ci j(i台设备提供给j号车间将得到的利润,1≤i≤n,1≤j≤m) 。问如何配,才使国家得到最大的盈利? 算法基本思想: 本问题是一简单资源问题,由于具有明显的最优子结构,故可以使用动态规划求解,用状态量f[i][j]表示用i台设备配给前j个车间的最大获利,那么显然有f[i][j] = max{ f[k][j–1] + c[i-k][j] },0<=k<=i。再用p[i][j]表示获得最优解时第j号车间使用的设备数为i-p[i][j],于是从结果倒推往回求即可得到配方案。程序实现时使用顺推,先枚举车间数,再枚举设备数,再枚举状态转移时用到的设备数,简单3重for循环语句即可完成。时间复杂度为O(n^2*m),空间复杂度为O(n*m),倘若此题只需求最大获利而不必求方案,则状态量可以减少一维,空间复杂度优化为O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

amocken

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值