点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
作者丨孙裕道 审稿丨邓富城
转载自:极市平台
导读
该论文提出了一种高效的Saliency Map生成方法,称为组分数加权类激活映射(Group-CAM)。
引言
当前解释深度卷积神经网络越来越引起了AI研究者的关注,因为它有助于理解深度神经网络的内部机制和做出特定决策的原因。在计算机视觉领域,可视化和理解深层网络最流行的方法之一是生成Saliency Map,突出与网络决策相关的显著区域。然而,现有方法生成的Saliency Map要么只反映网络预测的微小变化,要么计算显著图的计算过程的时间复杂度较高。该论文提出了一种高效的Saliency Map生成方法,称为组分数加权类激活映射(Group-CAM)。该论文作者提供了相应的代码,感兴趣的可以下载下来跑一跑。
论文链接:https://arxiv.org/abs/2103.13859
论文代码:https://github.com/wofmanaf/Group-CAM
Saliency Map介绍
在计算机视觉领域中,Saliency Map最先由Simonyan等人提出,它被用于图像分类模型的可视化。给定一个图像 ,类别 ,和类别预测分数函数 ,类别预测分数 输入样本 中像素点d的相关程度的计算公式可以表示为
Saliency Map的作用就是显示出样本中哪些特征对预测分数影响程度更大。
论文算法介绍
如下图所示为
初始化掩膜Masks
令
其中
假定
其中,
与其将所有像素设置为二进制值,不如为激活图生成更平滑的Mask。作者通过利用最小最大归一化将
Saliency Map生成
作者使用模糊信息替换未保留的区域(0值的像素),然后对该图像执行分类以测量初始屏蔽的重要性。模糊图像可以通过以下方式计算
其中,
保留区域
最终的Saliency Map是具有权重
根据上述原理所述,Group-CAM的算法流程图重新整理成如下形式:
实验结果
作者定性地比较的方法包括基于梯度的方法如引导反向传播,
如下图所示,
作者通过进行删除和插入测试,以评估不同的Saliency Map方法。删除度量背后的直觉是,删除与类别最相关的像素/区域将导致分类分数显著下降。另一方面,插入度量从模糊的图像开始,逐渐重新引入内容,这产生了更真实的图像。如下图所示,
在ImageNet-1k上运行时间方面的比较评估中可以发现
定位精度的计算公式可以表示为:
如果最显著的像素位于对象的带注释的边界框内,则被视为命中。从下表可知,
下图是微调后的ResNet-50生成的Saliency Map可视化。随着ResNet-50性能的提高,由
本文亮点总结
1.在计算机视觉领域中,Saliency Map最先由Simonyan等人提出,它被用于图像分类模型的可视化。Saliency Map的作用就是显示出样本中哪些特征对预测分数影响程度更大。
论文PDF和代码下载
后台回复:Group,即可下载上述论文和代码
后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集
后台回复:Transformer综述,即可下载最新的两篇Transformer综述PDF
CVer-Transformer交流群成立
扫码添加CVer助手,可申请加入CVer-Transformer 微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。
一定要备注:研究方向+地点+学校/公司+昵称(如Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲长按加小助手微信,进交流群▲点击上方卡片,关注CVer公众号
整理不易,请给CVer点赞和在看