点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
扫码加入CVer学术星球,可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,以及最前沿项目和应用!发论文搞科研,强烈推荐!
作者:王云鹤@知乎(已授权)
来源丨https://zhuanlan.zhihu.com/p/674854075
分割一切模型(Segment Anything Model,SAM)展现出了强大的分割万物能力,但是网络结构复杂,计算代价高,在资源受限的端侧应用中无法直接使用。同时,我们发现在SAM的Everything推理模式中,原始的网格点prompt的方式会带来巨大的计算代价。针对这个问题,我们提出了TinySAM模型,利用知识蒸馏、量化等手段对模型做了极致的压缩,同时提出了再Everything推理模式下的层次化推理策略。TinySAM在计算代价降低多个数量级的情况下,仍然保持了SAM模型强大的zero-shot分割能力。
TinySAM: Pushing the Envelope for Efficient Segment Anything Model
论文:https://arxiv.org/abs/2312.13789
同时我们开源了TinySAM的Pytorch和Mindspore代码和模型,供大家试用:
Pytorch代码:
https://github.com/xinghaochen/TinySAM
Mindspore代码:
https://gitee.com/mindspore/models/tree/master/research/cv/TinySAM
TinySAM在手机端侧可完成给定点或框作为prompt的自动分割功能。
TinySAM: 极致高效的分割一切模型
这个工作通过知识蒸馏、后量化等方法对SAM模型做极致压缩,同时提出一种针对Everything推理的加速方法,探索分割一切模型性能和效率的极限。
(1) 全阶段知识蒸馏
针对分割一切模型多模块、难优化的结构特点,我们提出一种全阶段的知识蒸馏方法,从多个特征层面进行蒸馏学习,从图像特征(embedding)、最终监督特征(mask)、中间过渡特征(token)三个层面进行蒸馏损失的设计,最大程度减少轻量化学生网络的学习难度。
(2) 模型后量化
为了进一步降低模型计算量,提升推理效率,我们将TinySAM量化到8bit,其中卷积层和反卷积层采用channel-wise的非对称均匀量化,matmul和linear层分别采用headwise和layerwise的对称均匀量化。在量化策略上,逐层对网络进行串行量化,并采用与任务Loss更一致的hessian guided metric作为量化前后输出的距离度量。量化后的模型计算量能进一步减少到全精度的1/4左右,大幅降低计算量。
(3) 层次化分割一切
SAM模型在Everything(分割一切)推理模式中,通过密集的网格点作为Prompt进行推理,我们发现这种密集的Prompt输入和推理耗费了大量的计算量。因此,我们设计了一种层次化的分割一切的推理策略。先用较少的初始采样点得到初始结果,然后把高置信度区域的密集采样点移除,得到二次推理结果,与初始推理结果进行后处理融合得到最终的推理结果。这种策略在保持分割一切效果的同时,大幅减少了采样点数量,推理加速一倍左右。
实验结果
我们在多个zero-shot下游任务上进行了实验,包括在COCO和LVIS数据集的zero-shot实例分割实验,我们按照SAM论文的设置通过ViTDet得到的检测框作为Prompt输入到TinySAM模型中。相比MobileSAM,TinySAM在COCO的平均准确率提升0.9%,在LVIS的平均准确率能提升1.6%。即使采用8bit量化后,TinySAM仍然保持了性能优势。更多的实验结果和可视化结果请参考论文。


在CVer微信公众号后台回复:论文,即可下载论文pdf和代码链接!快学起来!
CVPR / ICCV 2023论文和代码下载
后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集
后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
图像分割交流群成立
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-图像分割 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如图像分割+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!
▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看