让人物动起来!南大/复旦/阿里提出Champ:人体视频生成新SOTA!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/扩散和多模态】微信交流群

添加微信:CVer5555,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

d0342efe4ba765f2ae2731c7186d8e7f.jpeg

转载自:机器之心

一张照片 + 一段视频,就能让照片活起来!

近日,由阿里、复旦大学、南京大学联合发布的可控人体视频生成工作 Champ 火爆全网。该模型仅开源 5 天 GitHub 即收获 1k 星,在 Twitter 更是「火出圈」,吸引了大量博主二创,浏览量总量达到 300K。

00377af9f15f4542ffb5ab56b6b8b8d7.jpeg

目前 Champ 已经开源推理代码与权重,用户可以直接从 Github 上下载使用。官方 Hugging Face 的 Demo 已经上线,封装的 Champ-ComfyUI 也正在同步推进中。GitHub 主页显示团队将会在近期开源训练代码及数据集,感兴趣的小伙伴可以持续关注项目动态。

38b5812d367232690b9199fc266e4df3.gif

  • 项目主页:https://fudan-generative-vision.github.io/champ/

  • 论文链接:https://arxiv.org/abs/2403.14781

  • Github 链接:https://github.com/fudan-generative-vision/champ

  • Hugging Face 链接:https://huggingface.co/fudan-generative-ai/champ

先来看下 Champ 在真实世界人像上的视频效果,以下图左上角的动作视频为输入,Champ 能让不同的人像「复制」相同的动作:

56d0a22584905e01736f2832904f4fec.gif

虽然 Champ 仅用真实的人体视频训练,但它在不同类型的图像上展现了强大的泛化能力:

fdfb3427d8dc810710662c83822f5ffa.gif

黑白照片,油画,水彩画等效果拔群,在不同文生图模型生成的真实感图像,虚拟人物也不在话下:

468bafba3e6e615ad9e336ceb2201486.gif

技术概览

Champ 利用先进的人体网格恢复模型,从输入的人体视频中提取出对应的参数化三维人体网格模型 SMPL 序列(Skinned Multi-Person Linear Model),进一步从中渲染出对应的深度图,法线图,人体姿态与人体语义图,作为对应的运动控制条件去指导视频生成,将动作迁移到输入的参考人像上,能够显著地提升人体运动视频的质量,以及几何和外观一致性。

fed5030b57d8a446de9e706781dcb0f8.png

针对不同的运动条件,Champ 采用了一个多层运动融合模块(MLMF),利用自注意力机制充分融合不同条件之间的特性,实现更为精细化的运动控制。下图中展示了该模块不同条件的注意力可视化结果:深度图关注人物形态的几何轮廓信息,法线图指示了人体的朝向,语义图控制人体不同的部分的外观对应关系,而人体姿态骨架则仅关注于人脸与手部的关键点细节。

81697b11ea1288da1574bfff2d74ce3b.png

另一方面,Champ 发现并解决了人体视频生成中一直被忽略的体型迁移的问题。此前的工作或是基于人体骨骼模型,或是基于输入的视频得到的其他几何信息来驱动人像的运动,但这些方法都无法将运动与人体体型解耦,导致生成的结果无法与参考图像的人体体型匹配。

例如,给定一个大胖作为参考图像得到的如下图 7 所示的对比结果:

e5f25833fb67d06af8e4f4939fa8cb50.png

可以看到,Animate Anyone 与 MagicAnimate 的生成结果中,大胖的大肚子被抹平,甚至骨架也有一些缩水。而 Champ 利用 SMPL 中体型参数,来将其与驱动视频的 SMPL 序列进行参数化的体型对齐,从而在体型,动作上都取得了最佳的一致性(图中 with PST)。

实验结果

如下表 4 所示,与其他的 SOTA 工作相比,Champ 具有更好的运动控制以及更少的伪影:

39b58ef0b21adffe41c6ab8329892849.png

同时,Champ 还展现了其优越的泛化性能与外观匹配上的稳定性:

03f8ac0722c8a82aa26f351eb88b2bc6.png

在 TikTok Dance 数据集,Champ 评估了图像生成与视频生成的量化效果,它在多个评估指标上均有较大的提升,如下表 1 所示。

43b0e247fc0dcc97fa01feda1e71ebd1.png

更多技术细节以及实验结果请参阅 Champ 原论文与代码,也可在 HuggingFace 或下载官方源码动手体验。

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba和多模态学习交流群成立

 
 
扫描下方二维码,或者添加微信:CVer5555,即可添加CVer小助手微信,便可申请加入CVer-Mamba和多模态微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba或者多模态+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer5555,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
内容概要:文章详细探讨了数据连接性和云集成在增强汽车电子电气架构(EEA)方面的重要作用。首先介绍了从分布式到集中式架构的技术演进,解释了域集中式和中央集中式架构的优势,如远程软件升级(OTA)、软硬件解耦等。其次,阐述了云平台在远程软件更、数据存储与分析等方面的支持作用。接着,强调了数据连接性在实时通信、低延迟决策、多模态传感器融合以及工业物联网集成中的核心作用。此外,讨论了云集成在个性化服务、AI助手、自动驾驶训练与仿真、预测性维护等方面的应用。最后,分析了市场需求与政策支持对这一领域的影响,并展望了未来的发展趋势,如5G-A/6G、边缘计算与AI大模型的融合。 适用人群:汽车电子工程师、智能网联汽车行业从业者及相关领域的研究者。 使用场景及目标:①理解汽车电子电气架构从分布式到集中式的演进过程及其带来的优势;②掌握数据连接性和云集成在提升车辆智能化水平的具体应用和技术细节;③了解相关政策法规对智能网联汽车发展的支持与规范;④探索未来技术发展趋势及其可能带来的变革。 其他说明:本文不仅提供了技术层面的深入解析,还结合了实际应用案例,如特斯拉、蔚来、中联重科、约翰迪尔等企业的实践成果,有助于读者全面理解数据连接性和云集成在现代汽车工业中的重要地位。同时,文中提及的政策法规也为行业发展指明了方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值