Kaggle最新赛事!附baseline详解!

本文介绍了Kaggle最新自动论文评分竞赛,涉及NLP任务,目标是训练模型评估学生论文。通过使用BERT等预训练模型,适合NLP从业者参与。文章还提及了威廉老师的讲座和500+金牌方案的福利,以及数据集和抽奖活动的详情。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天解析一下Kaggle最新比赛:自动论文评分竞赛2.0——Learning Agency Lab - Automated Essay Scoring 2.0。文末有图书抽奖活动!

本次比赛类型是自然语言处理NLP。目标是训练一个模型来为学生论文评分

本次比赛能帮助大家熟练使用bert等预训练语言模型。比赛4月初刚开始,难度适中,适合所有从事NLP相关工作的同学参加。

有关本次比赛的baseline详解,我邀请了美国TOP20毕业的William老师开了一场讲座。William老师经验丰富,曾带领20+学员斩获Kaggle金牌

baseline讲座为福利性质,只需0.01元。并赠送500+Kaggle金牌方案扫码即可领取!

05ed037a33072266aeaf7daccb56c46a.png

扫码看讲座、领资料、包邮抽图书(文末详情)

赛题讲座

8e852b5bc6fb9d0df02a807ed93a9140.png

数据集介绍

竞赛数据集包含约24000篇学生撰写的议论性文章。

train.csv - 作为训练数据使用的文章和得分。

  • essay_id - 文章的唯一ID

  • full_text - 完整的文章内容

  • score - 文章的整体得分,范围为1到6

test.csv - 作为测试数据使用的文章。包含与train.csv相同的字段,除了排除了score。

  • sample_submission.csv - 符合正确格式的提交文件。

  • essay_id - 文章的唯一ID

  • score - 文章的预测整体得分,范围为1到6

数据样例:

6170e6358ad1295329e718ba2a6578cd.png

label分布:

5aeeed9da13bb969f15807b978d0168b.png

69c19b078b228d1ef69f407b8614ec89.png

扫码看讲座、领资料、包邮抽图书(文末详情)

500+Kaggle金牌方案

我整理了2023年10场比赛54个金牌方案,CV与NLP方向都有。此外,还有过去几年470场金牌方案。今天分享给大家下载。

ce12cd5ba6d93e11fc8c9b48a6d22be8.gif

b300528b748eafc2c7e74a1b8e09461a.png

扫码看讲座、领资料、包邮抽图书(文末详情)

包邮赠书福利

0ef070b9812f5f1e9d7c92195c6f008d.jpeg

扫描下方二维码,凭当前文章截图参与抽奖。抽取10名同学,包邮送出《机器学习算法竞赛实战》!图书将在月末统一寄出,感谢同学们的耐心等待。

31010f63c060eddf953ad4b5a3930b03.png

扫码看讲座、领资料、包邮抽图书

<think>好的,我需要帮助用户寻找深度学习的练习题、资源和教程。首先,用户提供的引用中提到了几本书和教程,比如《python深度学习》[^1]、PyTorch教程[^2]、LeeDL Tutorial[^3],还有GitHub上的开源项目。这些是很好的资源,应该优先推荐。 接下来,用户可能需要不同类型的资源,包括理论书籍、实践教程、练习题集和社区资源。练习题方面,Kaggle竞赛和LeetCode算法题是不错的选择,可以锻炼实际应用能力。另外,书籍中的代码实践部分也可以作为练习,比如《深度学习入门》中的实现。 GitHub上的开源项目,比如LeeDL Tutorial和fast.ai课程,提供了大量实战项目和练习题,用户可以通过参与这些项目来提升技能。在线平台如Coursera和Udacity的课程通常包含作业和项目,这也是很好的练习资源。 还要考虑用户可能处于不同学习阶段,比如入门、进阶或实战,因此需要分层次推荐资源。例如,入门者可以从《python深度学习》开始,而进阶学习者可以参与Kaggle竞赛或阅读论文复现代码。 最后,确保所有推荐的资源都有引用来源,并且格式正确。检查是否有遗漏的重要资源,比如官方文档或知名社区,这些也是不可或缺的学习工具。整理好这些内容后,分点列出,结构清晰,便于用户查看。</think>以下是深度学习相关的练习题、资源和教程推荐,结合了理论和实践内容: ### 一、精选教程资源 1. **《Python深度学习》**(François Chollet著) - 特点:Keras框架入门,包含从神经网络基础到计算机视觉的完整案例 - 配套资源:书中所有代码示例均可通过GitHub获取 - 练习题建议:可尝试复现代码并修改网络结构观察效果变化 2. **PyTorch官方教程** - 包含60分钟快速入门教程和图像分类、文本生成等实战项目 - 推荐练习:完成官方Tutorial中的「CIFAR10图像分类」任务 3. **《LeeDL Tutorial 深度学习详解》** - GitHub星标超1万的开源教程,包含数学推导和代码实现 - 特色:每章配套习题含参考答案,例如: ```python # 习题示例:实现交叉熵损失函数 def cross_entropy(y_pred, y_true): return -np.sum(y_true * np.log(y_pred)) ``` - 建议:按照GitHub项目中的学习路线完成练习 ### 二、专项练习题资源 1. **Kaggle学习路径** - 微型课程:包含深度学习入门(含PyTorch/Keras双版本) - 配套练习:如「Digit Recognizer」手写数字识别竞赛 2. **《深度学习入门》(鱼书)习题** - 特色:从零实现神经网络,包含: $$ \text{ReLU}(x) = \max(0, x) $$ - 推荐练习:手动推导反向传播公式 3. **Stanford CS230课程作业** - 包含医疗图像分类、机器翻译等真实场景项目 - 需掌握的公式示例: $$ \text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} $$ ### 三、实战提升资源 1. **Papers With Code** - 结合论文复现最新模型,如Transformer、Diffusion Model - 练习建议:选择经典论文(如ResNet)复现核心模块 2. **fast.ai实战课程** - 特色:Top-down学习法,第一课即可实现图像分类器 - 代码示例: ```python from fastai.vision.all import * path = untar_data(URLs.PETS)/'images' dls = ImageDataLoaders.from_name_func(path, get_image_files(path), valid_pct=0.2, seed=42) learn = vision_learner(dls, resnet34, metrics=error_rate) ``` 3. **OpenMMLab实战营** - 涵盖目标检测、图像分割等进阶主题 - 提供完整实验环境和baseline代码 ### 四、学习建议 1. 入门阶段:先完成「MNIST手写识别」等基础项目 2. 提升阶段:通过Kaggle比赛理解模型调优技巧 3. 进阶阶段:参与GitHub开源项目或学术竞赛(如AI Challenger)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值