NeurIPS 2024 | 清华提出DiffGS:首个通用三维高斯生成模型

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/多模态/扩散】交流群

添加微信号:CVer2233,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

15ac7a941d871a72f92d65f8c2583a4b.png

转载自:极市平台  作者丨周俊昇

导读

 

在本文中,作者第一次实现了原生的三维高斯生成式模型,无需对高斯数据进行体素化等预处理操作,并可以生成任意数量的3DGS。DiffGS同时是第一个通用三维高斯生成模型,支持图生3DGS、文生3DGS、三维高斯补全、点云到3DGS的生成等任务。

清华大学近期的工作:DiffGS: Functional 3D Gaussian Splatting Diffusion 被接收于 NeurIPS 2024。论文代码已开源:

e791aa53690d7bb618cf0a91ab74a7a9.png

论文地址:https://arxiv.org/abs/2410.19657

项目主页:https://junshengzhou.github.io/DiffGS

代码地址:https://github.com/weiqi-zhang/DiffGS

cba0c494a8ad0fd37dc28cab6f958af6.png

作者提出使用函数化方式来将离散的、非结构化的三维高斯表征解耦地表示为三个三维高斯函数,包括高斯概率函数、高斯颜色函数和高斯变换函数。在这三个连续的三维高斯函数上,可以训练一个标准的VAE + LDM (Variational Auto-encoder + Latent Diffusion Model) 的扩散生成式模型来生成这些函数。最后通过高斯提取算法获得最终生成的高斯。

DiffGS 网络框架:

44d63e13c03ad62ed07797a17f9f34ca.png

DiffGS 包括一个Gaussian VAE以及一个Gaussian LDM。首先训练Gaussian VAE来构建一个可以编码三维高斯并解码出三维高斯函数的隐特征空间,在这个隐特征的基础上训练一个Diffusion模型来实现三维高斯的生成。同时可以引入各种condition,如文本、图像和残缺高斯,来实现可控的三维生成。

高斯提取算法:

3afc5645a1dbb5a0ca6f4453cc97a98d.png

DiffGS设计了一个基于Octree的优化式高斯提取算法,以从生成的高斯概率函数、颜色函数和变换函数中恢复出高斯模型。该算法的目标类似于Marching Cubes算法从SDF中提取表面的过程。

下游应用:

DiffGS可以实现多个3DGS生成任务,如Unconditional Generation,Text-to-3DGS Generation,Image-to-3DGS Generation,Gaussian Completion,Point-to-Gaussian Generation。

无条件三维高斯生成

52828eafcd3260cf5c28ba40ac78a4e6.gif

与现有SOTA方法的可视化以及量化结果对比:

97967591568bfab521c0d629e9622a34.png b3f8893cf93f68b886219fc88a09c590.png

图/文生三维高斯

837cf6cb68ea10202970a85c357eb59e.gif

给定文本,比如“a grey chair has two L type legs”, DiffGS能够生成对应的三维高斯模型

三维高斯补全

017771970db667c3d6c15b37daf228fb.gif

DiffGS 是首个能够实现三维高斯补全的模型。给定残缺的模型,DiffGS能够预测完整的三维高斯模型

点云生成三维高斯

a87ed4e78f793e152a244392a4bffc6c.gif

DiffGS 还可以支持基于点云的三维高斯生成任务。只需要将Gaussian VAE的输入修改为三维点云即可以实现该任务。

 
 

何恺明在MIT授课的课件PPT下载

 
 

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba、多模态和扩散模型交流群成立

 
 
扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-Mamba、多模态学习或者扩散模型微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者扩散模型+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值