hdu 2031 进制转换 (java)

问题:

在c中字符间转化可以以char a=char(b+5);的方式,但在java中却没用,这里给出一种转化方法:int c=b+5;char a=char(c);

String字符串,倒过来:

StringBffer str=new StringBuffer(s);
s=str.reverse().toString();

在测试时加入了一些输出语句,和一些小改动,在输出时忘记改回来,导致一直不通过,以后请注意!!!

进制转换

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30858    Accepted Submission(s): 17147


Problem Description
输入一个十进制数N,将它转换成R进制数输出。
 

Input
输入数据包含多个测试实例,每个测试实例包含两个整数N(32位整数)和R(2<=R<=16, R<>10)。
 

Output
为每个测试实例输出转换后的数,每个输出占一行。如果R大于10,则对应的数字规则参考16进制(比如,10用A表示,等等)。
 

Sample Input
  
  
7 2 23 12 -4 3
 

Sample Output
  
  
111 1B -11

代码:

import java.util.*;

public class Main{
	public static void main(String args[]){
		Scanner cin=new Scanner(System.in);
		while(cin.hasNext()){
			int n=cin.nextInt();
			int r=cin.nextInt();
			String s="";
			if(n<0){
				n=-n;
				System.out.print("-");
			}
			char a='A';
			int b=a;
			while(n>0){
				int t=n%r;				
				if(t>=10){
					int c=t-10+b;
					char d=(char)c;
					s=s+d;								
				}
				else
					s=s+t;
				n=n/r;
			}
			StringBuffer str=new StringBuffer(s);
			s=str.reverse().toString();
			System.out.println(str);
		}
	}
}


HDOJ 1443是一个经典的数学模拟题目,通常涉及到动态规划。它描述的是“石头剪刀布”游戏的变种,玩家可以选择石头、剪刀或布,对手随机出拳。你需要编写一个程序来计算在给定的游戏轮数下,玩家获胜的概率。 以下是一个简化版的Java代码示例,实现了基本的策略并计算概率。假设我们使用朴素的策略,即每次都选择随机动作: ```java import java.util.Random; public class HDU_1443 { public static final String[] moves = {"石", "剪", "布"}; public static double getWinProbability(int n, int playerWins, int opponentWins) { Random random = new Random(); int totalGames = n * 3; double winCount = 0; for (int i = 0; i < totalGames; i++) { int playerMove = random.nextInt(3); int opponentMove = random.nextInt(3); if ((playerMove == 0 && opponentMove == 1) || (playerMove == 1 && opponentMove == 2) || (playerMove == 2 && opponentMove == 0)) { winCount++; } } return (double) winCount / totalGames * (1 + playerWins - opponentWins); // 考虑初始胜率差 } public static void main(String[] args) { int rounds = 1000; // 游戏轮数 System.out.println("Player wins on average in " + rounds + " games: " + getWinProbability(rounds, 0, 0)); // 初始胜率为0,两者无优势 } } ``` 注意:这是一个非常简单直接的解决方案,并未包含所有可能的策略优化,比如针对对手可能采取的特定策略进行调整。对于HDOJ这样的比赛题,可能需要更高级的策略分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值