零基础入门simulink仿真建模--通信领域的编码与纠错技术--基于Simulink的卷积码编解码仿真建模示例

目录

手把手教你学Simulink——基于Simulink的卷积码编解码仿真建模示例

一、背景介绍

二、所需工具和环境

三、步骤详解

步骤1:创建Simulink模型

步骤2:设计随机比特生成模块

步骤3:设计卷积码编码模块

步骤4:设计AWGN信道模块

步骤5:设计Viterbi解码模块

步骤6:设计误码率计算模块

步骤7:设计显示模块

步骤8:设置仿真参数

步骤9:运行仿真并分析结果

步骤10:误码率分析(调整SNR)

四、总结


手把手教你学Simulink——基于Simulink的卷积码编解码仿真建模示例

卷积码是一种重要的信道编码技术,广泛应用于通信系统中以提高数据传输的可靠性。卷积码通过引入冗余信息来增强抗干扰能力,结合Viterbi算法等解码方法可以有效纠正传输过程中出现的错误。在这个示例中,我们将使用Simulink搭建一个包含卷积码编码和解码的通信系统模型,并对其进行仿真分析。


一、背景介绍

卷积码 是一种线性分组码,其特点是当前编码输出不仅依赖于当前输入比特,还依赖于之前的若干输入比特。卷积码通常由约束长度(Constraint Length)和生成多项式(Generator Polynomials)定义。常见的解码方法是Viterbi算法,它通过最大似然估计来恢复原始信息。

在本示例中,我们将构建以下系统:

  1. 发送端:随机比特生成模块 + 卷积码编码模块。
  2. 信道:AWGN信道模拟噪声影响。
  3. 接收端:Viterbi解码模块 + 误码率计算模块。

二、所需工具和环境

为了完成此通信系统的仿真,你需要以下工具和环境:

  1. MATLAB/Simulink:用于建模和仿真。
  2. Communications Toolbox:提供必要的通信模块,如卷积码编码器、Viterbi解码器等。

确保你已经安装了上述工具箱,并且拥有有效的许可证。


三、步骤详解
步骤1:创建Simulink模型

首先,打开 MATLAB 并启动 Simulink 创建一个新的空白模型。

 

matlab

深色版本

% 创建新的Simulink模型
modelName = 'Convolutional_Code_Communication_System';
new_system(modelName);
open_system(modelName);
步骤2:设计随机比特生成模块

我们需要一个随机比特生成模块来模拟发送端的信息源。

  • 在 Sources 库中拖拽 Random Integer Generator 模块到模型编辑区。
  • 设置参数如下:
    • M-ary number:2(表示二进制信号)。
    • Sample time:0.01(采样时间为0.01秒)。
    • Initial seed:任意值(如12345)。
 

matlab

深色版本

% 添加随机比特生成模块
add_block('comm/Random Integer Generator', [modelName '/Random_Bit_Generator']);
set_param([modelName '/Random_Bit_Generator'], 'M', '2'); % 设置M-ary为2
set_param([modelName '/Random_Bit_Generator'], 'SampleTime', '0.01'); % 设置采样时间为0.01秒
set_param([modelName '/Random_Bit_Generator'], 'Seed', '12345'); % 设置随机种子
步骤3:设计卷积码编码模块

我们将使用卷积码编码模块对随机比特进行编码。

  • 在 Communications Toolbox > Channel Coding 库中拖拽 Convolutional Encoder 模块到模型编辑区。
  • 设置参数如下:
    • Trellis structure:poly2trellis(7, [171 133])(约束长度为7,生成多项式为[171 133])。
 

matlab

深色版本

% 添加卷积码编码模块
add_block('comm/Convolutional Encoder', [modelName '/Convolutional_Encoder']);
set_param([modelName '/Convolutional_Encoder'], 'TrellisStructure', 'poly2trellis(7, [171 133])');

连接随机比特生成模块的输出到卷积码编码模块的输入端口。

 

matlab

深色版本

% 连接随机比特生成模块到卷积码编码模块
add_line(modelName, [modelName '/Random_Bit_Generator'], [modelName '/Convolutional_Encoder'], 'autorouting', 'on');
步骤4:设计AWGN信道模块

为了模拟实际信道中的噪声,我们添加一个AWGN信道模块。

  • 在 Communications Toolbox > Channels 库中拖拽 AWGN Channel 模块到模型编辑区。
  • 设置参数如下:
    • Mode:Signal to noise ratio (SNR)(选择信噪比模式)。
    • SNR (dB):初始值可设为5dB(根据需要调整)。
    • Input signal power (Watts):1(设置输入信号功率为1瓦)。
 

matlab

深色版本

% 添加AWGN信道模块
add_block('comm/AWGN Channel', [modelName '/AWGN_Channel']);
set_param([modelName '/AWGN_Channel'], 'Mode', 'Signal to noise ratio (SNR)'); % 设置模式为信噪比
set_param([modelName '/AWGN_Channel'], 'SNR', '5'); % 设置信噪比为5dB
set_param([modelName '/AWGN_Channel'], 'SignalPower', '1'); % 设置信号功率为1瓦

连接卷积码编码模块的输出到AWGN信道模块的输入端口。

 

matlab

深色版本

% 连接卷积码编码模块到AWGN信道模块
add_line(modelName, [modelName '/Convolutional_Encoder'], [modelName '/AWGN_Channel'], 'autorouting', 'on');
步骤5:设计Viterbi解码模块

在接收端,我们需要对接收信号进行解码以恢复原始比特流。

  • 在 Communications Toolbox > Channel Coding 库中拖拽 Viterbi Decoder 模块到模型编辑区。
  • 设置参数如下:
    • Trellis structure:与编码器一致,即poly2trellis(7, [171 133])。
    • Decision type:Hard decision(硬判决解码)。
 

matlab

深色版本

% 添加Viterbi解码模块
add_block('comm/Viterbi Decoder', [modelName '/Viterbi_Decoder']);
set_param([modelName '/Viterbi_Decoder'], 'TrellisStructure', 'poly2trellis(7, [171 133])');
set_param([modelName '/Viterbi_Decoder'], 'DecisionType', 'Hard decision'); % 设置硬判决解码

连接AWGN信道模块的输出到Viterbi解码模块的输入端口。

 

matlab

深色版本

% 连接AWGN信道模块到Viterbi解码模块
add_line(modelName, [modelName '/AWGN_Channel'], [modelName '/Viterbi_Decoder'], 'autorouting', 'on');
步骤6:设计误码率计算模块

为了评估系统的性能,我们需要计算误码率(BER)。

  • 在 Communications Toolbox > Comm Sinks 库中拖拽 Error Rate Calculation 模块到模型编辑区。
  • 设置参数如下:
    • Output data:Port(选择输出到端口)。
    • Receive delay:0(无延迟)。
 

matlab

深色版本

% 添加误码率计算模块
add_block('comm/Error Rate Calculation', [modelName '/Error_Rate_Calculator']);
set_param([modelName '/Error_Rate_Calculator'], 'OutputData', 'Port'); % 设置输出到端口
set_param([modelName '/Error_Rate_Calculator'], 'ReceiveDelay', '0'); % 设置接收延迟为0

连接随机比特生成模块的输出和Viterbi解码模块的输出到误码率计算模块。

 

matlab

深色版本

% 连接随机比特生成模块到误码率计算模块
add_line(modelName, [modelName '/Random_Bit_Generator'], [modelName '/Error_Rate_Calculator/Tx'], 'autorouting', 'on');

% 连接Viterbi解码模块到误码率计算模块
add_line(modelName, [modelName '/Viterbi_Decoder'], [modelName '/Error_Rate_Calculator/Rx'], 'autorouting', 'on');
步骤7:设计显示模块

为了直观地观察结果,我们需要添加显示模块。

  • 在 Sinks 库中拖拽 Display 模块到模型编辑区。
  • 将误码率计算模块的输出连接到显示模块。
 

matlab

深色版本

% 添加显示模块
add_block('simulink/Sinks/Display', [modelName '/Display']);

% 连接误码率计算模块到显示模块
add_line(modelName, [modelName '/Error_Rate_Calculator'], [modelName '/Display'], 'autorouting', 'on');
步骤8:设置仿真参数

根据需要调整仿真时间、求解器类型和其他相关参数。

 

matlab

深色版本

% 设置仿真参数
set_param(modelName, 'StopTime', '10'); % 模拟运行时间为10秒
set_param(modelName, 'Solver', 'Fixed-step'); % 设置固定步长求解器
set_param(modelName, 'FixedStep', '0.01'); % 设置固定步长为0.01秒
步骤9:运行仿真并分析结果

完成上述步骤后,点击工具栏上的“Run”按钮开始仿真。观察显示模块中的误码率(BER),并记录结果。


步骤10:误码率分析(调整SNR)

为了分析系统的性能,我们可以通过调整AWGN信道模块中的信噪比(SNR)参数,观察误码率的变化。例如:

  1. 设置SNR为5dB,运行仿真,记录误码率。
  2. 设置SNR为10dB,运行仿真,记录误码率。
  3. 设置SNR为15dB,运行仿真,记录误码率。

通过多次实验,可以绘制出误码率随信噪比变化的曲线图(通常称为BER-SNR曲线)。

 

matlab

深色版本

% 示例:绘制BER-SNR曲线
snr_values = [5, 10, 15, 20]; % 不同信噪比值
ber_values = []; % 存储对应的误码率

for snr = snr_values
    set_param([modelName '/AWGN_Channel'], 'SNR', num2str(snr)); % 修改信噪比
    sim(modelName); % 运行仿真
    ber = get_param([modelName '/Display'], 'Value'); % 获取误码率
    ber_values = [ber_values, ber];
end

% 绘制BER-SNR曲线
figure;
semilogy(snr_values, ber_values, '-o');
xlabel('SNR (dB)');
ylabel('Bit Error Rate (BER)');
title('BER vs SNR for Convolutional Code System with AWGN');
grid on;

四、总结

通过本指南,我们介绍了如何基于Simulink搭建一个包含卷积码编码和解码的通信系统模型,并进行了仿真和性能评估。主要内容包括:

  • 背景介绍:理解卷积码的基本原理及其在通信系统中的应用。
  • 所需工具和环境:列出进行仿真所需的工具和环境。
  • 步骤详解:从零开始搭建一个完整的卷积码通信系统模型,涵盖随机比特生成、卷积码编码、AWGN信道模拟、Viterbi解码、误码率计算等模块的设计。
  • 性能评估:通过误码率(BER)评估系统的性能,并绘制BER-SNR曲线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值