目录
项目实例:Simulink在机器人视觉场景下的应用——基于视觉的智能仓储物流机器人导航与物品分拣
项目实例:Simulink在机器人视觉场景下的应用——基于视觉的智能仓储物流机器人导航与物品分拣
项目背景
随着电子商务和智能制造的发展,智能仓储物流系统逐渐成为提高物流效率、降低运营成本的重要手段。传统的仓储物流依赖于人工操作,而智能仓储物流机器人可以通过计算机视觉技术实现自主导航、物品识别和分拣。通过处理摄像头采集的图像数据,机器人可以识别仓库中的货架、物品和障碍物,并根据这些信息进行精准的导航和分拣操作。本项目的目标是使用Simulink和MATLAB设计一个基于视觉的智能仓储物流机器人系统,该系统能够实时处理图像数据,检测并分类物品,规划最优的导航路径,并控制机械臂进行精确的物品分拣。
1. 系统架构
1.1 硬件平台
- 物流机器人平台:选择一款具备高稳定性和扩展性的物流机器人平台,如Locus Robotics、Geek+等。
- 视觉传感器:配备一个或多个RGB-D摄像头(如Intel RealSense D435)、广角摄像头或鱼眼摄像头,用于捕捉环境图像和深度信息。
- 计算单元:机器人搭载一台嵌入式计算机(如NVIDIA Jetson Xavier NX、Intel NUC),用于运行Simulink生成的代码。
- 其他传感器:包括IMU(惯性测量单元)、GPS、激光雷达(LiDAR)、力传感器、关节编码器等,用于辅助导航和分拣控制。
1.2 软件平台
- Simulink:用于建模、仿真和生成C/C++代码,部署到机器人平台。
- MATLAB Computer Vision Toolbox:提供图像处理和计算机视觉算法库,支持目标检测、特征提取、图像分割等功能。
- ROS (Robot Operating System):作为机器人系统的通信框架,负责不同模块之间的数据传输和同步。
- MoveIt!:用于机械臂的运动规划和碰撞检测,确保机械臂安全高效地完成任务。
- SLAM (Simultaneous Localization and Mapping):用于构建环境地图并估计机器人的位姿,帮助机器人在未知环境中自主导航。
2. 系统功能模块
2.1 图像采集与预处理
- 图像采集:使用RGB-D摄像头或广角摄像头实时捕捉仓库中的环境图像,并通过ROS节点将图像数据传输到Simulink中。
- 图像预处理:对采集到的图像进行预处理,包括去噪、灰度化、边缘检测等操作,以提高后续处理的效率和准确性。
Matlab
深色版本
% 读取RGB-D图像
rgb_img = imread('rgb_image.jpg');
depth_img = imread('depth_image.png');
% 灰度化
gray_img = rgb2gray(rgb_img);
% 边缘检测
edges = edge(gray_img, 'Canny');
% 显示预处理后的图像
figure;
subplot(1, 3, 1);
imshow(rgb_img);
title('RGB Image');
subplot(1, 3, 2);
imshow(edges);
title('Edge Detection');
subplot(1, 3, 3);
imshow(depth_img, []);
title('Depth Image');
2.2 环境建图与定位
- SLAM (Simultaneous Localization and Mapping):使用视觉SLAM算法(如ORB-SLAM、VINS-Fusion)或激光雷达SLAM算法(如Cartograp