GEE
文章平均质量分 66
本栏为我的平时关于GEE的积累,其中部分博客为VIP,这是我认为比较不错的部分
Jackson的生态模型
大家好,我是一名CSDN博主,目前正攻读研究生学位,专注于全球变化生态学的研究。自加入CSDN以来,我始终以满腔热情和不懈的努力,通过撰写博文来分享我的学术探索和实践经验。我的博文内容覆盖了多个领域,包括地理信息系统(GIS)、基于GIS的Python开发、Google Earth Engine的使用、R语言编程以及机器学习等。
我衷心感谢每一位关注、点赞、评论和收藏我的博文的朋友们。正是你们的支持与鼓励,让我在学术道路上更加坚定和自信。展望未来,我计划进一步深化我所热爱的研究领域,不断学习新知,提升自我,并致力于创作更多高质量的内容。同时,我也期待与大家进行更深入的讨论和交流。
展开
-
【数据优化】GEE基于年内数据填补遥感缺失数据
在遥感影像分析中,我们经常会遇到由于云层遮挡、传感器故障等多重因素导致的图像数据缺失问题。为了解决这一挑战,常用的技术包括利用一年内数据的均值或最小值进行填充,以及采用线性插值等方法。在本文中,我们将探索如何借助 Google Earth Engine (GEE) 这一强大工具,以简洁高效的方式实现这些数据填充技术。这里我先使用年内数据填充法对多年数据进行填充。原创 2024-09-22 15:22:09 · 682 阅读 · 0 评论 -
GEE26:遥感数据可用数据源计算及条带号制作
🌍✨📚今天读了一篇关于遥感数据可用数据源计算及条带号制作的文章,结合着自己的理解,添加了一些内容。原创 2024-05-27 19:49:33 · 465 阅读 · 0 评论 -
GEE25:获取年均LAI(叶面积指数)和FPAR(光合有效辐射分量)
MODIS/061/MOD15A2H数据组合了叶面积指数 (LAI) 和光合有效辐射分数 (FPAR) 产品是分辨率为 500m 的 8 天复合数据集。该算法从Terra传感器8天内的所有采集数据中选择了“最佳”像元。原创 2024-05-14 08:58:05 · 860 阅读 · 0 评论 -
GEE24:合肥市1986-2024年年均NDVI变化分析
合肥市1986-2024年年均NDVI变化分析原创 2024-04-22 19:53:37 · 420 阅读 · 0 评论 -
GEE23:基于植被物候实现农作物分类
今天分享一个有意思的文章,用于进行农作物分类。文章提出了一个**灵活的物候辅助监督水稻(PSPR)制图框架**。主要是通过提取植被物候,并自动对物候数据进行采样,获得足够多的样本点,再使用随机森林等机器学习方法进行分类。这种方法有效解决了样本量不足或者样本位置不够精确的问题,并且分类结构相较于之前的方法更高。我认为这是一种比较有意思的文章,当然这种方法还可以用到其他植被类型分类中。原创 2024-03-30 22:13:27 · 1602 阅读 · 4 评论 -
GEE22:基于目视解译的土地利用分类(随机森林监督分类)
进行土地利用分类首先需要获取高分辨率的卫星或航空影像数据,这些影像可以来自于多种数据源,对影像进行预处理。使用GEE的绘图工具,在图像上绘制不同的土地利用类别,例如农田、森林、城市等构建样本集合。为每个绘制的类别定义属性分配相应的土地利用类别标签。使用选择的分类算法对训练数据进行模型训。常见的分类算法包括决策树、随机森林、支持向量机(SVM)、深度学习等。每种算法都有其优点和限制,可以根据任务的复杂性和数据特性来选择算法。原创 2024-03-29 22:29:22 · 1207 阅读 · 8 评论 -
GEE17: 基于Theil-Sen Median斜率估计和Mann-Kendall趋势分析方法分析NDVI变化【趋势分析】
使用GEE实现Sen+Kendall,Theil-Sen Median方法又称为Sen斜率估计,是一种稳健的非参数统计的趋势计算方法。Mann-Kendall(MK)检验是一种非参数的时间序列趋势性检验方法,其不需要测量值服从正太分布,不受缺失值和异常值的影响,适用于长时间序列数据的趋势显著检验。原创 2023-10-07 21:50:16 · 3221 阅读 · 3 评论 -
GEE 18:基于GEE平台的土地荒漠化监测与分析【论文复现】
目前,一种比较新的方法是通过构造“植被指数(NDVI)——反照率(Albedo)特征空间”来进行荒漠化信息遥感提取。荒漠化过程及其地表特性的变化能在 Albedo-NDVI特征空间中得到明显直观的反映。在Albedo-NDVI特征空间中,可以利用植被指数和地表反照率的组合信息,通过选择反映荒漠化程度的合理指数,就可以将不同荒漠化土地有效地加以区分,从而实现荒漠化时空分布与动态变化的定量监测与研究。而这个问题的合理解决,实际上就是如何根据需要采用一定的综合指标来划分Albedo-NDVI特征空间。原创 2023-10-15 19:29:40 · 1358 阅读 · 8 评论 -
GEE21:基于MODIS数据获取逐年GPP、EVI和FVC数据
基于MODIS数据获取植被逐年的GPP、EVI和植被覆盖度,植被覆盖度作为全球气候变化模型和描述生态系统的重要参数,通过有效获取植被进行光合作用面积的大小以及植被生长的茂盛程度,主要表现为地表植被的覆盖状态。原创 2023-11-20 20:20:52 · 1752 阅读 · 0 评论 -
GEE20:获取地面站点的遥感图层的采样值
去年由于实验需要,想通过GEE获取遥感图层的采样值,但是多次尝试后任无法实现。最近通过查询,终于找到的获取采样点的方法,现在将其记录在此,并与大家分享。原创 2023-11-13 14:48:56 · 239 阅读 · 0 评论 -
GEE16: 区域日均降水量计算及分析
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a 30+ year quasi-global rainfall dataset. CHIRPS incorporates 0.05° resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis原创 2023-10-05 22:56:17 · 1033 阅读 · 0 评论 -
GEE15:获取不同遥感指数的时间序列及不同指数间的关系
GPP数据在一定程度上和植被指数(如NDVI和EVI)有着显著的相关性,那么其相关性如何?如何从时间序列的角度来思考呢?下面我将用GEE代码解答这个问题。原创 2023-10-03 19:32:11 · 461 阅读 · 0 评论 -
GEE14:提取每年的GPP最大值
提取每年的GPP最大值,并输出其对应的DOY(day of year)原创 2023-09-02 23:16:00 · 492 阅读 · 0 评论 -
GEE13:合成高精度融雪趋势图
该项目中的谷歌地球引擎(GEE)代码结合了MODIS Aqua和Terra的雪盖产品,并得出了融雪——积雪(雪的物候)日期。由美国国家冰雪数据中心(NSIDC)处理的原始MODIS产品(MOD10A1和MYD10A1,分别用于Terra和Aqua平台)有偏低的趋势。更重要的是,该脚本还生成了一个衍生的雪的物候学产品,我计算了春季融雪(5%)的日期。作为一个例子,该脚本运行一个简单的回归分析,以标记融雪日期的趋势,回答融雪是否随着时间的推移而推迟或提前发生的问题。原创 2023-07-04 10:10:42 · 265 阅读 · 0 评论 -
GEE12:按年和月合成数据,分别获取年总和月均GPP遥感数据
由于某些数据的时间分辨率为8天或者16天,然而我们需要了解他的年总值或者均值,因此需要将整年的数据进行计算,为了方便起见,在GEE平台上进行操作,可以避免下载大量的数据到本地。原创 2023-06-16 14:55:43 · 4409 阅读 · 17 评论 -
GEE11:2个土地覆盖数据(LUCC)分享和下载
地表覆盖分布是气候变化研究、生态环境评估及地理国情监测等不可或缺的重要基础信息。近年来,随着遥感科学技术以及计算机存储和计算能力的不断提升,地表覆盖应用需求也逐步从公里尺度(如 1 公里,500 米)向更高分辨率的米级尺度(30 米和 10 米)过渡。目前,已公开的三套 30 米全球地表覆盖产品(GLC_FCS30,FROM_GLC 和 GlobeLand30)能够很好地服务了全球/区域尺度的应用需求。原创 2023-03-15 20:47:15 · 9583 阅读 · 7 评论 -
GEE10:Earth Engine Reducers的图像矢栅转换及区域统计
按指定输入的值对 reducer 的输出进行分组,可以获得 Image 或 FeatureCollection 的每个区域中的统计信息。对图像的属性归为一个组,以组的形式进行显示,并且将属性按照州编码就行归类,显示每个州的总属性。这与通过clip()等操作创建的分数像素有关。将Image的栅格格式转换为FeatureCollection的矢量格式。的输出进行分组,可以指定一个按整数像素值定义分组的分组带。,其中区域被指定为分组带,统计信息由Reducer确定。将强制该区域中的所有像素具有相同的权重。原创 2023-01-17 21:36:15 · 824 阅读 · 0 评论 -
GEE 9:Earth Engine Reducers 的基本操作
此类中的Reducer可以指定用于聚合的简单统计数据(最小值、最大值、平均值、中值、标准差等),或输入数据的更复杂的组合(例如直方图、线性回归、列表)。对一张图像进行简化,并且会对该图像的所有波段进行处理,输出图像只有一个波段,比如ee.Reducer.max(),但是ee.Reducer.minMax()有两个波段输出。有 4 个输入,4 个输出:保持元组具有第一个 (NDVI) 输入的最大值,将 4 个波段图像的堆叠转换为单个 4 波段图像。原创 2023-01-17 18:20:29 · 1013 阅读 · 0 评论 -
GEE8:多个矢量点的NDVI连续数据的获取及分析【CSV数据】
Sentinel-2是一个宽波段、高分辨率、多光谱成像任务,支持哥白尼土地监测研究,包括监测植被、土壤和水覆盖,以及观察内陆水道和沿海地区。Sentinel-2数据包含13个UINT16波段,代表TOA反射率10000倍。此外,有三个QA波段,其中一个(QA60)是带云掩码信息的位掩码波段。通过导入的本地矢量点,获取像元的植被指数,和之前的几篇博客相结合。原创 2022-11-05 23:56:00 · 2136 阅读 · 1 评论 -
GEE7:逐月NDVI最大值合成(获取CSV数据)
使用MOD13Q1数据,获取逐月NDVI最大值合成值,并得到csv数据原创 2022-11-02 22:33:38 · 3018 阅读 · 17 评论 -
GEE6:获取每年水体数据
地表水的位置和时间分布地图,并提供了关于这些水面的范围和变化的统计数据。这些数据使用1984年3月16日至2019年12月31日期间从陆地卫星5号、7号和8号获得的4185439个场景生成的。使用专家系统将每个像素分别分类为水/非水,并将结果整理成整个时间段和两个时代(1984-1999,2000-2019)的月度历史,以进行变化检测。集合包含逐月的水检测的整个历史。该图集包含430张图片,从1984年3月到2019年12月。原创 2022-10-26 13:43:27 · 1999 阅读 · 6 评论 -
GEE5:kNDVI植被指数的获取
kNDVI具有更好的性能,kNDVI将允许更准确地测量陆地碳源/汇的动态,以及稳定大气二氧化碳值和减缓全球气候变化的潜力。目前对该指数的使用比较少,之前主要集中在EVI的使用。原创 2022-10-26 13:21:39 · 7129 阅读 · 24 评论 -
GEE4:CFMASK算法进行去云处理
landsat 5:该数据集包含由 Landsat TM 传感器产生,经过大气校正的地表反射率(SR)和地表温度(LST)数据。这些图像包含4 个可见和近红外 (VNIR) 波段,以及 2 个处理为正射校正表面反射率的短波红外 (SWIR) 波段,以及一个处理为正射校正表面温度的热红外 (TIR) 波段。它们还包含用于计算 ST 产品的中间波段以及QA 波段。Landsat 4 和 5 SR 产品是使用 Landsat 生态系统干扰自适应处理系统 (LEDAPS) 算法(版本 3.4.0)创建的。原创 2022-09-03 15:43:19 · 2186 阅读 · 2 评论 -
GEE3:吴秋生geemap介绍和安装
该研讨会旨在为科学程序员、数据科学家、地理空间分析人员和地球上的相关公民提供服务。与会者应该对Python和Jupyter生态系统有一个基本的了解。熟悉地球科学和地理空间数据集是有用的,但不是必需的。原创 2022-08-20 16:36:34 · 5469 阅读 · 10 评论 -
GEE2:MCD12Q1全球500米土地利用分类产品使用
The MCD12Q1 V6 product provides global land cover types at yearly intervals (2001-2016) derived from six different classification schemes. It is derived using supervised classifications of MODIS Terra and Aqua reflectance data.原创 2022-08-12 18:59:57 · 1975 阅读 · 0 评论 -
GEE1:由GEE生成逐月MODIS的NDVI影像
在遥感中,常常会提到NDVI,它的全称是 Normalized Difference Vegetation Index,也就是归一化差分植被指数,是反映农作物长势和营养信息的重要参数之一,它的计算原理很简单,就是近红外波段的反射值与红光波段的反射值之差比上两者之和。即 NDVI=(NIR-R)/(NIR+R),NIR为近红外波段的反射值,R为红光波段的反射值。......原创 2022-08-05 21:55:01 · 4435 阅读 · 1 评论 -
GEE配置本地开发环境
1.安装Google的 python API的客户端: 非常好用:pip install -i http://pypi.douban.com/simple --trusted-host pypi.douban.com google-api-python-client2.安装鉴权验证依赖库:vc ++14.0下载原创 2021-03-18 22:21:53 · 687 阅读 · 0 评论