在应用开发过程中,由于初期数据量较小,开发人员在编写SQL语句时更注重功能的实现。但是,当应用系统正式上线后,随着生产数据量的激增,逐渐暴露出很多SQL语句。 如果出现性能问题,对生产的影响也越来越大。这时,这些有问题的SQL语句就成为了整个系统性能的瓶颈,所以我们必须对其进行优化。
优化MySQL的方法有很多,大致可以从以下几点来优化MySQL:
从设计上优化
从查询上优化
从索引上优化
从存储上优化
MySQL客户端连接成功后,可以通过show [session|global] status命令查看服务器状态信息。 通过查看状态信息,可以查看当前数据库的主要操作类型。
--下面的命令显示了当前 session 中所有统计参数的值
show session status like 'Com_______'; -- 查看当前会话统计结果
show global status like 'Com_______'; -- 查看自数据库上次启动至今统计结果
show status like 'Innodb_rows_%’; -- 查看针对Innodb引擎的统计结果
定位低效率执行SQL
可以通过以下两种方式定位执行效率较低的 SQL 语句。
慢查询日志 : 通过慢查询日志定位那些执行效率较低的 SQL 语句。
show processlist:该命令查看当前MySQL在进行的线程,包括线程的状态、是否锁表等,可以实时地查看 SQL 的执行情况,同时对一些锁表操作进行优化。
-- 查看慢日志配置信息
show variables like '%slow_query_log%';
-- 开启慢日志查询
set global slow_query_log=1;
-- 查看慢日志记录SQL的最低阈值时间
show variables like 'long_query_time%';
-- 修改慢日志记录SQL的最低阈值时间
set global long_query_time=4;
定位低效率执行SQL-show processlist
show processlist;
1)id列:用户登录mysql时,可以使用函数connection_id()查看系统分配的“connection_id”
2) user列:显示当前用户。 如果你不是root,这个命令只会显示用户权限范围内的sql语句
3) host列:显示语句是从哪个IP端口发出的,可以用来跟踪出问题语句的用户
4)db列:显示进程当前连接到哪个数据库
5)command列:显示当前连接执行的命令,一般取值有sleep、query、connect等。
6)time列:以秒为单位显示该状态的持续时间
7)state列:显示使用当前连接的SQL语句的状态,是一个很重要的栏。 state 描述语句执行中的某种状态。 一条sql语句,以查询为例,可能需要经过复制到tmp表、排序结果、发送数据等状态才能完成
8)info列:显示这条sql语句,是判断问题语句的重要依据
explain分析执行计划
通过以上步骤查询出低效的SQL语句后,可以使用EXPLAIN命令获取MySQL是如何执行SELECT语句的信息,包括在SELECT语句执行过程中表是如何连接的以及连接顺序。
-- 准备测试数据
create database mydb13_optimize;
use mydb13_optimize;
--执行sql脚本sql_optimize.sql添加数据
explain select * from user where uid = 1;
explain select * from user where uname = '张飞';
id 字段是 select查询的序列号,是一组数字,表示的是查询中执行select子句或者是操作表的顺序。id 情况有三种:
1、id 相同表示加载表的顺序是从上到下。
explain select * from user u, user_role ur, role r where u.uid = ur.uid and ur.rid = r.rid ;
2、 id 不同id值越大,优先级越高,越先被执行。
explain select * from role where rid = (select rid from user_role where uid = (select uid from user where uname = '张飞'))
3、 id 有相同,也有不同,同时存在。id相同的可以认为是一组,从上往下顺序执行;在所有的组中,id的值越大,优先级越高,越先执行。
explain select * from role r , (select * from user_role ur where ur.uid = (select uid from user where uname = '张飞')) t where r.rid = t.rid ;
Explain分析执行计划-Explain 之 select_type
表示 SELECT 的类型,常见的取值,如下表所示:
Explain分析执行计划-Explain 之 type
type 显示的是访问类型,是较为重要的一个指标,可取值为:
结果值从最好到最坏以此是:system > const > eq_ref > ref > range > index > ALL
Explain分析执行计划-其他指标字段
Explain 之 table
显示这一步所访问数据库中表名称有时不是真实的表名字,可能是简称。
explain 之 rows
扫描行的数量。
Explain 之 key
possible_keys :显示可能应用于此表的索引,一个或多个。
key : 实际使用的索引,如果为NULL,则不使用该索引。
key_len :指示索引中使用的字节数。 该值是索引字段的最大可能长度,而不是实际使用的长度。 长度越短越好,而且不会损失准确性。
Explain之 extra
其他的额外的执行计划信息,在该列展示 。
show profile分析SQL
Mysql从5.0.37版本开始增加了对show profiles和show profile语句的支持。 show profiles可以帮助我们了解在做SQL优化的时候,时间都花在了哪些地方。
通过 have_profiling 参数,能够看到当前MySQL是否支持profile:
select @@have_profiling;
set profiling=1; -- 开启profiling 开关;
通过profile,我们能够更清楚地了解SQL执行的过程。首先,我们可以执行一系列的操作。
show databases;
use mydb13_optimize;
show tables;
select * from user where id < 2;
select count(*) from user;
执行完上述命令之后,再执行show profiles 指令, 来查看SQL语句执行的耗时:
show profiles;
通过show profile for query query_id 语句可以查看到该SQL执行过程中每个线程的状态和消耗的时间:
show profile for query 8;
MySQL在获取最耗时的线程状态后,支持进一步选择all、cpu、block io、context switch、page faults等详细类型,查看MySQL正在使用哪些资源耗时过多。 例如选择查看CPU时间:
show profile cpu for query 133;
trace分析优化器执行计划
MySQL5.6提供了对SQL的跟踪trace, 通过trace文件能够进一步了解为什么优化器选择A计划, 而不是选择B计划。
打开trace,设置格式为JSON,并设置trace可以使用的最大内存大小,避免在解析过程中因为默认内存太小而显示不完整。
SET optimizer_trace="enabled=on",end_markers_in_json=on;
set optimizer_trace_max_mem_size=1000000;
执行SQL语句:
select * from user where uid < 2;
最后, 检查information_schema.optimizer_trace就可以知道MySQL是如何执行SQL的 :
select * from information_schema.optimizer_trace\G;
使用索引优化
索引是数据库优化最常用也是最重要的手段之一, 通过索引通常可以帮助用户解决大多数的MySQL的性能优化问题。
数据准备:
create table `tb_seller` (
`sellerid` varchar (100),
`name` varchar (100),
`nickname` varchar (50),
`password` varchar (60),
`status` varchar (1),
`address` varchar (100),
`createtime` datetime,
primary key(`sellerid`)
);
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('alibaba','阿里巴巴','阿里小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('baidu','百度科技有限公司','百度小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('huawei','华为科技有限公司','华为小店','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('itcast','传智播客教育科技有限公司','传智播客','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('itheima','黑马程序员','黑马程序员','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('luoji','罗技科技有限公司','罗技小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('oppo','OPPO科技有限公司','OPPO官方旗舰店','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('ourpalm','掌趣科技股份有限公司','掌趣小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('qiandu','千度科技','千度小店','e10adc3949ba59abbe56e057f20f883e','2','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('sina','新浪科技有限公司','新浪官方旗舰店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('xiaomi','小米科技','小米官方旗舰店','e10adc3949ba59abbe56e057f20f883e','1','西安市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('yijia','宜家家居','宜家家居旗舰店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
-- 创建组合索引
create index idx_seller_name_sta_addr on tb_seller(name,status,address);
避免索引失效应用-全值匹配
该情况下,索引生效,执行效率高。
explain select * from tb_seller where name='小米科技' and status='1' and address='北京市';
避免索引失效应用-最左前缀法则
该情况下,索引生效,执行效率高。
-- 最左前缀法则
-- 如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始,并且不跳过索引中的列。
explain select * from tb_seller where name='小米科技'; -- 403
explain select * from tb_seller where name='小米科技' and status='1'; -- 410
explain select * from tb_seller where status='1' and name='小米科技'; -- 410
-- 违法最左前缀法则 , 索引失效:
explain select * from tb_seller where status='1'; -- nulll
-- 如果符合最左法则,但是出现跳跃某一列,只有最左列索引生效:
explain select * from tb_seller where name='小米科技' and address='北京市'; -- 403
-- 范围查询右边的列,不能使用索引 。
explain select * from tb_seller where name='小米科技' and status >'1' and address='北京市’;
-- 不要在索引列上进行运算操作, 索引将失效。
explain select * from tb_seller where substring(name,3,2)='科技’
-- 字符串不加单引号,造成索引失效。
explain select * from tb_seller where name='小米科技' and status = 1 ;
-- 1、范围查询右边的列,不能使用索引 。
-- 根据前面的两个字段name , status 查询是走索引的, 但是最后一个条件address 没有用到索引。
explain select * from tb_seller where name='小米科技' and status >'1' and address='北京市';
-- 2、不要在索引列上进行运算操作, 索引将失效。
explain select * from tb_seller where substring(name,3,2)='科技'
-- 3、字符串不加单引号,造成索引失效。
explain select * from tb_seller where name='小米科技' and status = 1 ;
-- 4、尽量使用覆盖索引,避免select *
-- 需要从原表及磁盘上读取数据
explain select * from tb_seller where name='小米科技' and address='北京市'; -- 效率低
-- 从索引树中就可以查询到所有数据
explain select name from tb_seller where name='小米科技' and address='北京市'; -- 效率高
explain select name,status,address from tb_seller where name='小米科技' and address='北京市'; -- 效率高
-- 如果查询列,超出索引列,也会降低性能。
explain select name,status,address,password from tb_seller where name='小米科技' and address='北京市'; -- 效率低
-- 尽量使用覆盖索引,避免select *
-- 需要从原表及磁盘上读取数据
explain select * from tb_seller where name='小米科技' and address='北京市'; -- 效率低
-- 从索引树中就可以查询到所有数据
explain select name from tb_seller where name='小米科技' and address='北京市'; -- 效率高
explain select name,status,address from tb_seller where name='小米科技' and address='北京市'; -- 效率高
-- 如果查询列,超出索引列,也会降低性能。
explain select name,status,address,password from tb_seller where name='小米科技' and address='北京市'; -- 效率低
-- 用or分割开的条件, 那么涉及的索引都不会被用到。
explain select * from tb_seller where name='黑马程序员' or createtime = '2088-01-01 12:00:00';
explain select * from tb_seller where name='黑马程序员' or address = '西安市';
explain select * from tb_seller where name='黑马程序员' or status = '1';
-- 以%开头的Like模糊查询,索引失效。
explain select * from tb_seller where name like '科技%'; -- 用索引
explain select * from tb_seller where name like '%科技'; -- 不用索引
explain select * from tb_seller where name like '%科技%';-- 不用索引
-- 弥补不足,不用*,使用索引列
explain select name from tb_seller where name like '%科技%';
-- 1、如果MySQL评估使用索引比全表更慢,则不使用索引。
-- 这种情况是由数据本身的特点来决定的
create index index_address on tb_seller(address);
explain select * from tb_seller where address = '北京市'; -- 没有使用索引
explain select * from tb_seller where address = '西安市'; -- 没有使用索引
-- 2、is NULL , is NOT NULL 有时有效,有时索引失效。
create index index_address on tb_seller(nickname);
explain select * from tb_seller where nickname is NULL; -- 索引有效
explain select * from tb_seller where nickname is not NULL; -- 无效
大批量插入数据
create table `tb_user` (
`id` int(11) not null auto_increment,
`username` varchar(45) not null,
`password` varchar(96) not null,
`name` varchar(45) not null,
`birthday` datetime default null,
`sex` char(1) default null,
`email` varchar(45) default null,
`phone` varchar(45) default null,
`qq` varchar(32) default null,
`status` varchar(32) not null comment '用户状态',
`create_time` datetime not null,
`update_time` datetime default null,
primary key (`id`),
unique key `unique_user_username` (`username`)
);
当使用load 命令导入数据的时候,适当的设置可以提高导入的效率。对于 InnoDB 类型的表,有以下几种方式可以提高导入的效率:
1) 主键顺序插入
因为InnoDB表是按照主键顺序存储的,所以将导入的数据按照主键的顺序排列,可以有效提高导入数据的效率。 如果InnoDB表没有主键,系统默认会自动创建一个内部列作为主键,所以如果可以为表创建主键,可以借此提高导入数据的效率。
-- 1、首先,检查一个全局系统变量 'local_infile' 的状态, 如果得到如下显示 Value=OFF,则说明这是不可用的
show global variables like 'local_infile';
-- 2、修改local_infile值为on,开启local_infile
set global local_infile=1;
-- 3、加载数据
/*
脚本文件介绍 :
sql1.log ----> 主键有序
sql2.log ----> 主键无序
*/
load data local infile 'D:\\sql_data\\sql1.log' into table tb_user fields terminated by ',' lines terminated by '\n';
2 、关闭唯一性校验
在导入数据前执行 SET UNIQUE_CHECKS=0,关闭唯一性校验,在导入结束后执行SET UNIQUE_CHECKS=1,恢复唯一性校验,可以提高导入的效率。
-- 关闭唯一性校验
SET UNIQUE_CHECKS=0;
truncate table tb_user;
load data local infile 'D:\\sql_data\\sql1.log' into table tb_user fields terminated by ',' lines terminated by '\n';
SET UNIQUE_CHECKS=1;
优化insert语句
当进行数据的insert操作的时候,可以考虑采用以下几种优化方案:
-- 如果需要同时对一张表插入很多行数据时,应该尽量使用多个值表的insert语句,这种方式将大大的缩减客户端与数据库之间的连接、关闭等消耗。使得效率比分开执行的单个insert语句快。
-- 原始方式为:
insert into tb_test values(1,'Tom');
insert into tb_test values(2,'Cat');
insert into tb_test values(3,'Jerry');
-- 优化后的方案为 :
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
-- 在事务中进行数据插入。
begin;
insert into tb_test values(1,'Tom');
insert into tb_test values(2,'Cat');
insert into tb_test values(3,'Jerry');
commit;
-- 数据有序插入
insert into tb_test values(4,'Tim');
insert into tb_test values(1,'Tom');
insert into tb_test values(3,'Jerry');
insert into tb_test values(5,'Rose');
insert into tb_test values(2,'Cat');
-- 优化后
insert into tb_test values(1,'Tom');
insert into tb_test values(2,'Cat');
insert into tb_test values(3,'Jerry');
insert into tb_test values(4,'Tim');
insert into tb_test values(5,'Rose');
优化order by语句
CREATE TABLE `emp` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(100) NOT NULL,
`age` int(3) NOT NULL,
`salary` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
);
insert into `emp` (`id`, `name`, `age`, `salary`) values('1','Tom','25','2300');
insert into `emp` (`id`, `name`, `age`, `salary`) values('2','Jerry','30','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('3','Luci','25','2800');
insert into `emp` (`id`, `name`, `age`, `salary`) values('4','Jay','36','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('5','Tom2','21','2200');
insert into `emp` (`id`, `name`, `age`, `salary`) values('6','Jerry2','31','3300');
insert into `emp` (`id`, `name`, `age`, `salary`) values('7','Luci2','26','2700');
insert into `emp` (`id`, `name`, `age`, `salary`) values('8','Jay2','33','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('9','Tom3','23','2400');
insert into `emp` (`id`, `name`, `age`, `salary`) values('10','Jerry3','32','3100');
insert into `emp` (`id`, `name`, `age`, `salary`) values('11','Luci3','26','2900');
insert into `emp` (`id`, `name`, `age`, `salary`) values('12','Jay3','37','4500');
create index idx_emp_age_salary on emp(age,salary);
2、两种排序方式
第一种是通过对返回的数据进行排序,也就是通常所说的filesort排序,所有不直接通过索引返回排序结果的排序,都称为filesort排序。
二是通过有序索引顺序扫描直接返回有序数据,称为using index,不需要额外排序,运行效率高。
3、Filesort 的优化
通过创建合适的索引,可以减少Filesort的出现,但在某些情况下,条件限制不能使Filesort消失,所以需要加快Filesort的排序操作。 对于Filesort,MySQL有两种排序算法:
1)二次扫描算法:在MySQL4.1之前,使用这种方法进行排序。 首先根据条件取出排序字段和行指针信息,然后在排序区的排序缓冲区中进行排序。 如果排序缓冲区不够,则将排序结果存入临时表。 排序完成后,根据行指针将记录读回表中,可能会引起大量的随机I/O操作。
2)一次扫描算法:一次性取出所有满足条件的字段,然后在排序缓冲区中排序后直接输出结果集。 排序的内存开销较大,但排序效率高于二次扫描算法。
优化group by
因为GROUP BY其实也进行了排序操作,而与ORDER BY相比,GROUP BY主要只是在排序后增加了分组操作。 当然如果在分组的时候使用了一些其他的聚合函数,那么也需要进行一些聚合函数的计算。 因此,在GROUP BY的实现过程中,也可以像ORDER BY一样使用索引。
如果查询中包含group by,但用户又想避免排序后的结果被消费,可以执行order by null来关闭排序。 如下 :
drop index idx_emp_age_salary on emp;
explain select age,count(*) from emp group by age;
explain select age,count(*) from emp group by age order by null;
create index idx_emp_age_salary on emp(age,salary);
优化子查询
使用子查询可以一次完成很多逻辑上需要多步才能完成的SQL操作,也可以避免事务或表锁,而且编写简单。 然而,在某些情况下,子查询可以被更高效的连接(JOIN)所取代。
explain select * from user where uid in (select uid from user_role );
explain select * from user u , user_role ur where u.uid = ur.uid;
system>const>eq_ref>ref>range>index>ALL
连接(Join)查询之所以更有效率一些 ,是因为MySQL不需要在内存中创建临时表来完成这个逻辑上需要两个步骤的查询工作。
优化limit查询
一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是 limit 900000,10 ,此时需要MySQL排序前900010 记录,仅仅返回900000 - 900010 的记录,其他记录丢弃,查询排序的代价非常大 。
1、优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
2、优化思路二
该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询 。