“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。
得到“答案正确”的条件是:
- 字符串中必须仅有
P
、A
、T
这三种字符,不可以包含其它字符; - 任意形如
xPATx
的字符串都可以获得“答案正确”,其中x
或者是空字符串,或者是仅由字母A
组成的字符串; - 如果
aPbTc
是正确的,那么aPbATca
也是正确的,其中a
、b
、c
均或者是空字符串,或者是仅由字母A
组成的字符串。
现在就请你为 PAT 写一个自动裁判程序,判定哪些字符串是可以获得“答案正确”的。
输入格式:
每个测试输入包含 1 个测试用例。第 1 行给出一个正整数 n (<10),是需要检测的字符串个数。接下来每个字符串占一行,字符串长度不超过 100,且不包含空格。
输出格式:
每个字符串的检测结果占一行,如果该字符串可以获得“答案正确”,则输出 YES
,否则输出 NO
。
输入样例:
8
PAT
PAAT
AAPATAA
AAPAATAAAA
xPATx
PT
Whatever
APAAATAA
输出样例:
YES
YES
YES
YES
NO
NO
NO
NO
这道题绕了很多弯,实际上就是根据输入字符串中P、T的位置来划分A,将A的数量分为3个部分:P前,P、T之间,T后。关键在于找全它输出YES的条件是什么:
1.每个字符必须是PAT中的一个。
2.P和T的个数必须为1,A至少为1个。
3.P在T前面。
4.n1 * n2 = n3。
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
bool judge(string s)
{
int count_p = 0;
int count_a = 0;
int count_t = 0;
int position_p = 0;
int position_a = 0;
int position_t = 0;
int n1 = 0;
int n2 = 0;
int n3 = 0;
for (int i = 0; i < s.length(); i++)
{
if (s[i] != 'P'&&s[i] != 'A'&&s[i] != 'T') { // 条件1判断:每个字符必须是PAT中的一个
return false;
}
if (s[i] == 'P') {
count_p += 1;
}
else if (s[i] == 'A') {
count_a += 1;
}
else if (s[i] == 'T') {
count_t += 1;
}
}
if (count_p != 1 || count_t != 1 || count_a < 1) { // 条件2判断:P和T的个数必须为1,A至少为1个
return false;
}
//找到PAT三个字符的位置
position_p = s.find('P');
position_a = s.find('A');
position_t = s.find('T');
if (position_p >= position_t) { // 条件3判断:P在T前面
return false;
}
// 对3个位置的A的数量进行统计
for (int i = 0; i < s.length(); i++) {
if (i < position_p&&s[i] == 'A') {
n1++;
}
else if (i > position_p&&i < position_t&&s[i] == 'A') {
n2++;
}
else if (i > position_t&&s[i] == 'A') {
n3++;
}
}
if (n1*n2 == n3) { // 条件4判断:n1 * n2 = n3。
return true;
}
else {
return false;
}
}
int main()
{
int n;
cin >> n;
string s;
for(int i=0;i<n;i++)
{
cin >> s;
if (judge(s))
{
cout << "YES" << endl;
}
else
{
cout << "NO" << endl;
}
}
return 0;
}
之前写了3种思路的方法,每一次都通过了不同的测试用例,结果3次加起来通过了所有的测试用例,百思不得其解,后来去看了下别人的题解的思路,发现自己出了两个问题:1.条件少判断1个;2.条件判断混乱。我在之前的方法中,当发现不符合条件,立刻输出"NO",看似是能提高效率,实际上不利于后续的判断。所以最后还是将4个判断条件找全后,对每个条件分别进行判断,这样条理清晰,如果出错也能很快找清错误。