- 博客(5)
- 收藏
- 关注
转载 浅谈简单前缀和与差分问题
\(Part1:\) 前缀和与差分的简单定义 考虑一个数组\(A\),其项数为\(n\)项。有\(m\)次询问,每次询问给定两个参数\(l\)和\(r\),要求求出\(A[l]+A[l+1]+...+A[r]\)。 怎么做呢? 暴力:显然是\(O(nm)\)的 数据结构维护:显然是\(O(mlogn)\)的 前缀和的用处就在于可以将这样的序列区间求和的问题用\(O(n+m)\)的复杂...
2019-10-04 09:52:00 206
转载 题解 P1082 同余方程
本题出处:NOIP2012Day2T1 题意:求方程\(ax\equiv1\pmod{b}\)的最小正整数解\(x\)。 \[ax\equiv1\pmod{b}\] \[\Rightarrow ax+by=1\] 输入数据保证有解,也就是保证了\(\gcd(a,b)=1\)即\(a,b\)互质。 \[\Rightarrow ax+by=gcd(a,b)\] 直接套用扩展欧几里德\((...
2019-09-14 12:22:00 147
转载 题解 P3811 【模板】乘法逆元
题意求\(i\)在模\(p\)意义下的逆元\(\frac{1}{i}\)即\(inv(i)\)。题目数据范围很明显规定了要求一个线性求逆元的算法。 令\(p=ai+b\),则有: \[ai+b\equiv 0(\mod p)\] \[ai\equiv -b(\mod p)\] \[i\equiv -\frac{b}{a}(\mod p)\] \[\frac{1}{i} \equiv -\...
2019-09-08 13:26:00 278
转载 题解 P2822 组合数问题
本题出处:NOIP2016提高组Day2T1 \(90\)分做法:先用\(Pascal\)公式在模\(k\)意义下\(O(2000^2)\)预处理出所有数据范围内的组合数。对于每一个询问,暴力枚举\(i\)和\(j\)的值,如果在模\(k\)意义下此时有\(\C_i^j=0\),说明\(\C_i^j\)是\(k\)的倍数。暴力更新并统计答案即可。 \(code:\) #include...
2019-09-08 13:17:00 265
转载 题解 P3197 [HNOI2008]越狱
所谓“正难则反”,我们从反面来考虑这个问题。 显然有:发生越狱的情况数\(=\)总情况数\(-\)不发生越狱的情况数。 考虑计算总情况数和不发生越狱的情况数。 总情况数也就是有\(n\)个格子,每个格子均有\(m\)种选择的方案数。也就是\(m^n\)。 同理,不发生越狱的情况数就是有\(n\)个格子,第\(1\)个格子有\(m\)种选择,其他格子均有\(m-1\)种选择的方案数。也就是...
2019-09-07 18:26:00 148
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人