题解 P3811 【模板】乘法逆元

题意求\(i\)在模\(p\)意义下的逆元\(\frac{1}{i}\)\(inv(i)\)。题目数据范围很明显规定了要求一个线性求逆元的算法。

\(p=ai+b\),则有:
\[ai+b\equiv 0(\mod p)\]
\[ai\equiv -b(\mod p)\]
\[i\equiv -\frac{b}{a}(\mod p)\]
\[\frac{1}{i} \equiv -\frac{a}{b}(\mod p)\]
\[inv(i) \equiv -\frac{a}{b}(\mod p)\]
\[inv(i) \equiv \frac{p-a}{b}(\mod p)\]
其中:
\[a=\frac{p}{i},b=p\mod i\]
最终结论:
\[inv(i)=\frac{p-\frac{p}{i}}{p\mod i}\]

\(code:\)

#include<bits/stdc++.h>//P3811 【模板】乘法逆元
using namespace std;
#define re register
#define ll long long
#define il inline
#define dou double
#define un unsigned
il int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
#define INF 114514114
#define clr(x) memset(x,0,sizeof(x))
#define N 3000000+10
int n,p;
int inv[N];
int main()
{
    n=read();p=read();
    inv[1]=1;
    for(re ll i=2;i<=n;i++)inv[i]=(ll)(p-p/i)*inv[p%i]%p;
    for(re ll i=1;i<=n;i++)printf("%d\n",inv[i]);
    return 0;
}

转载于:https://www.cnblogs.com/Hakurei-Reimu/p/11485640.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值