pandas库的数据类型运算

pandas库的数据类型运算

算数运算法则

  • 根据行列索引,补齐运算(不同索引不运算,行列索引相同才运算),默认产生浮点数
  • 补齐时默认填充NaN空值
  • 二维和一维,一维和0维之间采用广播运算(低维元素与每一个高维元素运算)
  • 采用 +-*/符号的二元运算会产生新的对象
a = pd.DataFrame(np.arange(12).reshape(3,4))
a

b = pd.DataFrame(np.arange(20).reshape(4,5))
b

# 维度相同,行列内元素个数不同的运算,自动补齐,缺项NaN
a + b
a * b

 

除了使用+-*/,也可使用方法形式,好处是可以增加可选参数

  • .add(d,**argws) 类型间加法运算,可选参数
  • .sub(d,**argws) 类型间减法运算,可选参数
  • .mul(d,**argws) 类型间乘法运算,可选参数
  • .div(d,**argws) 类型间除法运算,可选参数
b.add(a,fill_value = 100) #将a和b之间的缺失元素用100补齐并参加与运算
a.mul(b,fill_value = 0)

 


不同维度运算

b = pd.DataFrame(np.arange(20).reshape(4,5))
b
c = pd.Series(np.arange(4))
c

c - 10
b - c #b的每一行都与c运算一遍,二维和一维运算默认在轴1(行)发生
b.sub(c,axis=0) #指定用 列 参与运算

 


比较运算法则

  • 比较运算只能比较相同索引的元素,不进行补齐(尺寸不同会报错)
  • 二维和一维/一维和零维间为广播运算
  • 采用>< >= <= -- !=等符号进行的二元运算产生布尔对象
a = pd.DataFrame(np.arange(12).reshape(3,4))
a
d = pd.DataFrame(np.arange(12,0,-1).reshape(3,4))
d

a > d #bool值表
a == d
b = pd.DataFrame(np.arange(12).reshape(3,4))
b
c = pd.Series(np.arange(4))
c

a > c
c > 0

 

转载于:https://www.cnblogs.com/yoyo1216/p/10131791.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值