问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
解题思路:利用数组一点点计算值,并时刻更新排序
#include<iostream>
#include<algorithm>
using namespace std;
bool complare(int a,int b)//重新定义排序方式
{
return a > b;
}
int main()
{
int n;
int min1,min2,s = 0;
cin >> n;
int a[n];
for(int i = 0 ; i < n ; i++)
cin >> a[i];
while(n != 1)
{
int sum = 0;
sort(a,a + n,complare);
min1 = a[n - 1];
min2 = a[n - 2];
//cout << min1 << " " << min2 << endl;
sum = min1 + min2;
a[n - 2] = sum;
a[n - 1] = 0;
s += sum;
n--;
}
cout << s << endl;
}
方案2:
利用vector,关于vector的知识可以点击这里查看
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int main()
{
vector<int> v;
vector<int>::iterator iter;
int sum = 0;
int n;
cin >> n;
for(int i = 0 ; i < n ; i++)
{
int m;
cin >> m;
v.push_back(m);
}
while(v.size() != 1)
{
sort(v.begin(),v.end());//从小到大
int k = v[0] + v[1];
cout << " k :" << k << endl;
v.push_back(k);
sum += k;
v.erase(v.begin());//删除两次
v.erase(v.begin());
}
cout << sum << endl;
return 0;
}