方法一 倾斜的key单独处理
当存在大量倾斜key的时候,可以通过手动拆分,将倾斜与未倾斜的部分分别做处理,再将结果合并。
用法示例:不包括倾斜key的查询union all包括倾斜key的查询
select
*
from
FACT f
left join DIMENSION d
on f.CODE_ID = d.CODE_ID
where
f.CODE_ID <> 250
union all
select
*
from
FACT f
left join DIMENSION d
on f.CODE_ID = d.CODE_ID
where
f.CODE_ID = 250
and d.CODE_ID = 250
还有一种情况比较简单,如果业务上不需要一些key的参与(比如空字符串等无效或无价值的key),可以考虑将倾斜的key直接过滤掉。
用法示例:
select a.col1,null as col2 from test1 a
where a.id is null
union all
select a.col1,b.col2 from test1 a
left join test2 b on a.id=b.id
where a.id is not null
但是这种方法适用的场景是导致倾斜的key只有少数几个,并且不影响最终结果。所以如果倾斜的key比较重要,不适合进行过滤的操作,也可以采用下面的方式进一步解决。
方法二 改用MapJoin的形式,广播小表出去,避免shuffle
CommonJoin(也被称为Shuffle Join/Reduce side Join/Sort Merge Join..)主要是在 Shuffle 阶段(Reduce 端)执行。
Common Join 的一个主要问题是在数据整理排序的过程上耗费了大量的资源,它会启动一个Task,Mapper会去读取两张

本文介绍了数据倾斜时的三种处理方法:倾斜key单独处理,改用MapJoin以避免shuffle,以及使用SkewJoin解决大表关联的数据倾斜问题。MapJoin通过广播小表提升效率,而SkewJoin则针对倾斜key和常规key采用不同Join策略,减少性能影响。
最低0.47元/天 解锁文章
804

被折叠的 条评论
为什么被折叠?



