hive:使用map join解决大小表关联造成的数据倾斜

本文介绍了大数据处理中的数据倾斜问题及其原因,如小表key集中和无聚合函数的group by。重点讲解了如何利用Hive的Map Join特性,通过将小表放入内存,在Map阶段完成关联操作,避免数据倾斜,提高处理效率。同时,讨论了即使两张都是大表,通过切分小表仍可应用Map Join的方法。
摘要由CSDN通过智能技术生成

什么是数据倾斜

在大数据处理过程中,不怕数据大,就怕数据倾斜。
数据倾斜就是在mapreduce过程中,一个或几个reduce端处理的数据量过大,明显远大于平均值,导致少数的reduce端的任务长时间无法完成,而其他reduce端又无事可做,明显的效率低下。

数据倾斜的一些原因

1、关联查询时,有一个较小的表的key比较集中
key的分布不均就导致在分区时,某一个或几个分区的数量过多
2、使用group by但没有用聚合函数,导致维度过小,某值的数量过多

  那么我们需要在使用group by时注意一定要同时使用聚合函数,避免数据倾斜。

使用map join解决大小表关联造成的数据倾斜

map join 概念:将其中做连接的小表(全量数据)分发到所有 MapTask 端进行 Join,从 而避免了 reduceTask,前提要求是内存足以装下该全量数据。

map join通常用于一个很小的表和一个大表进行join的场景,具体小表有多小,由参数 hive.mapjoin.smalltable.filesize来决定,该参数表示小表的总大小,默认值为25000000字节,即25M。 一般默认就够了,无须修改。
在这里插入图片描述
使用map join解决小表关联大表造成的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值