by 目标检测原理qq群:703346870
实际工程中需要设计新的anchor来满足自身数据集。
本代码目的使用kmeans聚类出anchor的长宽
#-*-coding:utf-8-*-
'''
by 目标检测原理qq群:703346870
实际工程中需要设计新的anchor来满足自身数据集。
本代码目的使用kmeans聚类出anchor的长宽
参考
[1] 博客https://blog.csdn.net/cgt19910923/article/details/82154401
[2] git https://github.com/lars76/kmeans-anchor-boxes
'''
import glob
import xml.etree.ElementTree as ET
import numpy as np
import pdb
def iou(box, clusters):
"""
Calculates the Intersection over Union (IoU) between a box and k clusters.
:param box: tuple or array, shifted to the origin (i. e. width and height)
:param clusters: numpy array of shape (k, 2) where k is the number of clusters
:return: numpy array of shape (k, 0) where k is the number of clusters
"""
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
raise ValueError("Box has no area")intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]iou_ = intersection / (box_area + cluster_area - intersection)
return iou_
def avg_iou(boxes, clusters):
"""
Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.
:param boxes: numpy array of shape (r, 2), where r is the number of rows
:param clusters: numpy array of shape (k, 2) where k is the number of clusters
:return: average IoU as a single float
"""
return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
def translate_boxes(boxes):
"""
Translates all the boxes to the origin.
:param boxes: numpy array of shape (r, 4)
:return: numpy array of shape (r, 2)
"""
new_boxes = boxes.copy()
for row in range(new_boxes.shape[0]):
new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
return np.delete(new_boxes, [0, 1], axis=1)
def kmeans(boxes, k, dist=np.median):
"""
Calculates k-means clustering with the Intersection over Union (IoU) metric.
:param boxes: numpy array of shape (r, 2), where r is the number of rows
:param k: number of clusters
:param dist: distance function
:return: numpy array of shape (k, 2)
"""
rows = boxes.shape[0]distances = np.empty((rows, k))
last_clusters = np.zeros((rows,))np.random.seed()
# the Forgy method will fail if the whole array contains the same rows
clusters = boxes[np.random.choice(rows, k, replace=False)]while True:
for row in range(rows):
distances[row] = 1 - iou(boxes[row], clusters)nearest_clusters = np.argmin(distances, axis=1)
if (last_clusters == nearest_clusters).all():
breakfor cluster in range(k):
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)last_clusters = nearest_clusters
return clusters
def load_dataset(path):
dataset = []
for xml_file in glob.glob("{}/*xml".format(path)):
tree = ET.parse(xml_file)
height = int(tree.findtext("./size/height"))
width = int(tree.findtext("./size/width"))
for obj in tree.iter("object"):
xmin = int(obj.findtext("bndbox/xmin")) / width
ymin = int(obj.findtext("bndbox/ymin")) / height
xmax = int(obj.findtext("bndbox/xmax")) / width
ymax = int(obj.findtext("bndbox/ymax")) / height
xmin = np.float64(xmin)
ymin = np.float64(ymin)
xmax = np.float64(xmax)
ymax = np.float64(ymax)
if xmax == xmin or ymax == ymin:
print(xml_file)
dataset.append([xmax - xmin, ymax - ymin])
return np.array(dataset)
if __name__ == '__main__':
ANNOTATIONS_PATH = "../detection/val" #xml文件所在文件夹
CLUSTERS = 3#9 #聚类数量,anchor数量
INPUTDIM = 416 #输入网络大小
data = load_dataset(ANNOTATIONS_PATH)
out = kmeans(data, k=CLUSTERS)
print('Boxes:')
print(np.array(out)*INPUTDIM)
print("Accuracy: {:.2f}%".format(avg_iou(data, out) * 100))
#print(out)
#ratios = np.around(out[:, 0] / out[:, 1], decimals=2).tolist()
#print("Ratios:\n {}".format(sorted(ratios)))
参考
[1] 博客https://blog.csdn.net/cgt19910923/article/details/82154401
[2] git https://github.com/lars76/kmeans-anchor-boxes