基于Python的电商手机数据可视化分析和推荐系统

本文介绍了如何使用Python技术构建一个京东手机数据抓取、分析和推荐系统,涉及网络爬虫、数据分析、ECharts可视化以及简单推荐算法。通过实例展示了如何获取手机数据、统计销售分布和市场占有率等,并实现个性化手机推荐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

本项目旨在通过Python技术栈对京东平台上的手机数据进行抓取、分析并构建一个简单的手机推荐系统。主要功能包括:

  • 网络爬虫:从京东获取手机数据;
  • 数据分析:统计各厂商手机销售分布、市场占有率、价格区间和好评率;
  • 可视化展示:使用ECharts进行数据可视化;
  • 推荐系统:根据分析结果为用户推荐手机。

基于Python的电商手机数据可视化分析和推荐系统

2. 电商手机数据网络爬虫

使用Python的requests库和BeautifulSoup库实现对京东手机页面的爬取。需要处理分页、动态加载等问题。

def getCommentData(prod_id, format_url, proc, i, maxPage):
    '''
    format_url: 格式化的字符串架子,在循环中给它添上参数
    proc: 商品的productID,标识唯一的商品号
    i: 商品的排序方式,例如全部商品、晒图、追评、好评等
    maxPage: 商品的评论最大页数
    '''
    sig_comment = []
    global list_comment
    cur_page = 0
    while cur_page < maxPage:
        cur_page += 1
        # url = 'https://sclub.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv%s&score=%s&sortType=5&page=%s&pageSize=10&isShadowSku=0&fold=1'%(proc,i,cur_page)
        url = format_url.format(proc, i, cur_page)  # 给字符串添上参数
        try:
            response = requests.get(url=url, headers=comment_headers, verify=False)
            time.sleep(np.random.rand() * 2)
            jsonData = response.text
            startLoc = jsonData.find('{')
            # print(jsonData[::-1])//字符串逆序
            jsonData = jsonData[startLoc:-2]
            jsonData = json.loads(jsonData)
            pageLen = len(jsonData['comments'])
            print("当前第%s页,最大%s页" % (cur_page, maxPage))
            for j in range(0, pageLen):
                userId = jsonData['comments'][j]['id']  # 用户ID
                # 数据解析代码
                # ...........
        except:
            time.sleep(5)
            cur_page -= 1
            print('网络故障或者是网页出现了问题,五秒后重新连接')


def fetch_phone_comment(product, product_id):
    print('抓取 {} 产品的评论数据。。。。。。'.format(product))
    format_url = 'https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98&{0}&score={1}&sortType=5&page={2}&pageSize=10&isShadowSku=0&fold=1'

    list_comment = []
    sig_comment = []
    proc = 'productId={}'.format(product_id)
    i = -1
    while i < 7:  # 遍历排序方式
        i += 1
        if (i == 6):
            continue
        # 先访问第0页获取最大页数,再进行循环遍历
        url = format_url.format(proc, i, 0)
        print(url)
        try:
            response = requests.get(url=url, headers=comment_headers, verify=False)
            # 数据解析代码
            # ...........
            getCommentData(proc, format_url, proc, i, jsonData['maxPage'])  # 遍历每一页
        except Exception as e:
            i -= 1
            print("the error is ", e)
            time.sleep(5)

    return list_comment



def fetch_brand_phones(brand_name, brand_href):
    """ 抓取该品牌的手机数据 """
    page = 1
    size = 1

    while page < 10:
        brand_page_href = brand_href + '&page={}&s={}&click=0'.format(page, size)
        resp = requests.get(brand_page_href, headers=headers)
        soup = BeautifulSoup(resp.text, 'lxml')
        items = soup.find_all('li', attrs={'class': 'gl-item'})

        all_phones = []
        for item in items:
            # 图片
            # 价格
            # 手机产品名称
            # 产品的详细链接
            # 抓取该产品的详细信息,此处为销量
            # 数据解析代码
            # ...........

            phone = {
                '品牌': brand_name,
                '图片': img,
                '价格': price,
                '产品名称': name,
                '链接': phone_href,
                '评论': json.dumps(comment_dict, ensure_ascii=False)
            }
            all_phones.append(phone)

3. 电商手机数据可视化分析和推荐系统

3.1 首页与注册登录

3.2 各厂商手机销售分布

3.3 手机品牌市场占有率

3.4 各品牌在售手机价格区间

3.5 各品牌好评率分析

3.6 品牌手机推荐

6. 总结

        本项目利用Python强大的数据处理能力,结合网络爬虫技术,对京东手机数据进行了有效的抓取和分析,并通过可视化手段直观展示了分析结果。同时,通过简单的推荐算法,实现智能手机推荐系统。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

Python爬取京东手机销量榜通常涉及网络爬虫技术,利用像requests库来发送HTTP请求获取网页内容,然后使用BeautifulSoup、Scrapy等库解析HTML,提取手机销售数据。以下是简单的步骤: 1. **安装依赖**:首先需要安装`requests`, `beautifulsoup4`等必要的库。 ```bash pip install requests beautifulsoup4 lxml ``` 2. **编写脚本**:创建一个Python文件,使用try-except处理可能出现的异常,比如请求超时、编码问题等。这里仅提供基本框架,实际操作需要连接到京东的API或者抓取动态加载的内容(如Ajax)。 ```python import requests from bs4 import BeautifulSoup def get_jd_sales(): url = "https://list.jd.com/list.html?cat=1007&sort=sale" # 这是一个示例URL,具体销量榜可能有变动 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3' } try: response = requests.get(url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.text, 'lxml') # 解析HTML并提取销量信息,这将取决于页面结构 sales_list = soup.find_all('div', class_='item') # 示例,可能需要调整class名 for item in sales_list: rank, title, sales = extract_sale_info(item) # 自定义函数来提取数据 print(f"{rank}. {title}: {sales} 销量") else: print("请求失败,状态码:", response.status_code) except Exception as e: print("爬取过程中出错:", str(e)) def extract_sale_info(element): # 实现根据页面结构提取具体信息 # 这里只是示例,实际提取需要查找对应的元素或CSS选择器 rank = element.find('span', class_='index').text title = element.find('a', class_='name').text sales = element.find('span', class_='num').text return rank, title, sales get_jd_sales() ``` 注意:京东可能会对频繁访问其网站的行为设置反爬机制,所以实际爬取前,你需要了解京东的robots.txt规则,并遵守网站的使用条款。此外,抓取实时的销量排行榜可能需要更复杂的技术手段,如Selenium模拟浏览器交互。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python极客之家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值