作者 / 高级开发者关系工程师 Kateryna Semenova 和高级产品经理 Mark Sherwood
在 "AI on Android Spotlight Week" 期间,我们深入探讨了如何将自己的 AI 模型引入 Android 设备,如手机、平板电脑等。通过利用 Google 和其他来源的工具与技术,您可以直接在这些设备上运行复杂的 AI 模型,以实现更出色的性能、更好的隐私性和更高的可用性,创造激动人心的可能性。
🔗 AI on Android Spotlight Week
https://android-developers.googleblog.com/2024/09/welcome-to-ai-on-android-spotlight-week.html
了解设备端 AI
设备端 AI 不依赖基于云服务器,而是直接在硬件设备上部署和运行机器学习或生成式 AI 模型。此方法具有几项优势,例如降低延迟、强化隐私、节约成本,以及减少了对互联网连接的依赖。
对于生成文本用例,请探索 Gemini Nano;用户现在可以通过 Gemini Nano 的 SDK 进行实验性访问。对于许多设备端 AI 用例,您可能想要在应用中打包自己的模型。我们将在本文介绍如何在 Android 上实现此操作。
🔗 Gemini Nano
https://developer.android.google.cn/ai/aicore
🔗 SDK
https://developer.android.google.cn/ai/gemini-nano/experimental
设备端 AI 的核心资源
Google AI Edge 平台为在边缘设备上构建和部署 AI 模型提供了一个全面的生态系统。此平台支持各种框架和工具,能让开发者将 AI 功能无缝集成到应用中。Google AI Edge 平台包括:
MediaPipe Tasks - 跨平台低代码 API,用于处理常见的生成式 AI、视觉、文本和音频任务
LiteRT (前身为 TensorFlow Lite) - 用于在 Android 上部署自定义机器学习模型的轻量级运行时
MediaPipe Framework - 用于将多