Simhash相似哈希算法

前言

最近在阅读吴军博士的<<数学之美>>这门书,得到了很多的启发和思考,里面提到了一个概念---信息指纹。一般正常人提到这个概念,第一个想到的词应该是哈希映射算法,将任何对象都映射成一个独立的变量,一般这个变量是一个独有的数字,当然也不排除哈希碰撞的可能行。论单个对象,用哈希算法做一次映射,比较对象是否一致,这固然是可以的,但是如果想用哈希算法做一些文章之间的相似度计算的时候,可能传统的哈希算法就不见得是最佳的选择了,如果把整篇文章都作为一个超长字符串的去计算,准确率无法保证,因为字符串中的任何字符的变化,也许都会造成后面的值变得差异很大。那么如果单个单个去计算的话,如何用一个有效的标准去衡量这些看似没有关联的哈希值呢。还好我们是站在巨人的肩膀上的,有一种叫Simhash算法正好巧妙的解决了我们的问题。

Simhash的背景

Simhash当初比较早些的时候用在了Google的网页爬虫中,用于重复网页的去重。可以说,Simhash就是拿来计算网页的信息指纹。Simhash是在2002年的时候由Moses Chariker 提出的。

Simhash算法原理

Simhash的设计非常的巧妙,这里举一个实际的使用场景,来使大家直观的感受这个神奇的算法。比如比较2个网页的相似度,那么比较的关键就是里面的各种词,假设有t1,t2.t3等等,每个词都会自己的信息指纹,最简单的就是字符串的hashcode值,而Simhash的作用就是把这些值进行一个汇总,得到一个整个网页的哈希值。下面是2个大的模块。

一.扩展。将上个步骤中的各个词的哈希值取余数,做一个位数的限制,比如最终的展现需要为8位的二进制数,就要把哈希值取2的8次方就是256的余数,方便后面的加减权重操作。然后初始化一个8位数组,默认每个位上的值都为0。下面的步骤是第一个模块的关键步骤了。

因为刚刚有t1,t2,t3等等这些词语的哈希值,然后取余数后就是1个个的8位的二进制整数,下面是遍历操作,取第一个词的信息指纹,假设是10000010,(随便假设的),此时总的哈希值为:

r1=1   0+w1

r2=0   0-w1

r3=0  0-w1<

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 我可以给您提供一个Python示例代码以实现局部敏感哈希算法:def lsh(s, b, r): # s 为输入字符串,b 为哈希分块大小,r 为哈希函数的数量 n = len(s) # 初始化一个列表来存储哈希值 hashes = [] # 遍历所有 r 个哈希函数 for i in range(r): h = 0 # 遍历字符串中的每个字符 for j in range(0, n, b): # 如果当前字符不足 b 个,仅使用实际字符数目 m = min(b, n-j) # 计算当前字符块的哈希值 h = h + hash(s[j:j+m]) # 将 h 添加到哈希列表中 hashes.append(h) # 返回哈希列表 return hashes ### 回答2: 局部敏感哈希算法(Locality Sensitive Hashing,简称LSH)是一种常用于解决数据检索问题的算法。它的目标是在高维数据中快速找到与给定查询相似数据项。 要用Python编写局部敏感哈希算法,可以按照以下步骤进行: 1. 首先,选择一个合适的哈希函数。在局部敏感哈希算法中,常用的哈希函数包括随机投影、MinHash和SimHash等。 2. 准备需要检索的数据集。假设我们有一个包含大量文档的文本集合。 3. 对每个文档,使用选择的哈希函数将文档哈希为一个固定长度的二进制编码。可以使用Python的哈希函数库来实现如下: ```python import hashlib def hash_document(document, hash_size): hash_value = hashlib.md5(document.encode('utf-8')).hexdigest() binary_hash = bin(int(hash_value, base=16))[2:].zfill(hash_size) return binary_hash ``` 其中,`document`表示待哈希的文档,`hash_size`表示哈希编码的长度。这里使用MD5哈希函数将文档编码为哈希值,并将其转换为二进制编码。 4. 组织哈希索引。将每个文档的哈希编码存储到一个哈希索引中,可以使用Python的字典数据结构来实现。键是哈希编码的值,值是与该哈希编码相对应的文档标识符列表。 ```python def build_hash_index(documents, hash_size): hash_index = {} for doc_id, doc_content in enumerate(documents): binary_hash = hash_document(doc_content, hash_size) if binary_hash in hash_index: hash_index[binary_hash].append(doc_id) else: hash_index[binary_hash] = [doc_id] return hash_index ``` 其中,`documents`是由文档组成的列表。 5. 执行查询。对于给定的查询文档,使用相同的哈希函数将其编码为哈希值,并在哈希索引中查找相似哈希编码。 ```python def query_similar_documents(query, hash_index, hash_size, threshold): query_hash = hash_document(query, hash_size) similar_documents = set() for index_hash, doc_ids in hash_index.items(): if hamming_distance(query_hash, index_hash) <= threshold: similar_documents.update(doc_ids) return similar_documents ``` 其中,`query`表示查询文档,`threshold`是哈希距离的阈值。 通过以上步骤,我们可以用Python编写一个简单的局部敏感哈希算法。当然,在实际应用中,还可以根据具体需求对算法进行优化和改进。 ### 回答3: 局部敏感哈希(Locality Sensitive Hashing,LSH)是一种常用于数据相似性搜索的算法。下面是使用Python编写局部敏感哈希算法的例子: 首先,我们需要安装第三方库`numpy`和`sklearn`,使用以下命令进行安装: ``` pip install numpy pip install sklearn ``` 接下来,我们可以开始编写局部敏感哈希算法的代码。下面是一个简单的示例: ```python import numpy as np from sklearn.neighbors import LSHForest # 创建一个随机数据集 data = np.random.random((100, 10)) # 初始化局部敏感哈希算法对象 lshf = LSHForest(n_estimators=10, random_state=42) # 训练数据集 lshf.fit(data) # 通过查询相似项 query_data = np.random.random((1, 10)) nearest_neighbors = lshf.kneighbors(query_data, n_neighbors=5, return_distance=False) # 打印最近的邻居 print(nearest_neighbors) ``` 在上面的代码中,我们首先创建了一个随机的数据集`data`,然后初始化了一个局部敏感哈希算法对象`lshf`。我们使用`fit`方法对数据集进行训练,然后使用`kneighbors`方法查询与给定数据`query_data`相似的最近邻居,最后打印出最近邻居的索引。 通过这个例子,我们可以看到,使用`sklearn`库的`LSHForest`类可以很方便地实现局部敏感哈希算法。这个算法在大规模数据相似性搜索中有广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值