自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 unbuntu22.04上安装OBS

安装完成后,您将能够使用OBS Studio进行视频录制和直播等操作。请注意,这只是一个基本的安装过程,根据您的具体需求,可能需要进行其他配置和调整。如果您遇到任何问题,可以参考OBS Studio的官方文档或在相关社区寻求帮助。

2024-05-11 22:58:17 235

原创 window环境如何安装docker

检测是否已经安装了docker。

2024-05-07 19:43:59 249

原创 Window CPU环境本地部署ChatGLM3-6B模型

在window CPU环境部署chatGLM3-6B大模型

2024-05-03 21:48:43 422

原创 使用tree_sitter获取代码AST抽象语法树

使用python 库tree_sitter解析代码并生成AST抽象语法树

2024-05-01 18:40:29 809 4

原创 大模型训练资源评估

卡间通信延长对训练时长的影响未有明确测算公式,根据现有实例推测:H800相对于H100也仅有卡间通信速率的下降(约50%),其在执行训练任务时,H800消耗比H100多10%-30%的时间。激活值所消耗的额外显存随batchsize的大小而增加,在batchsize较大时,此部分额外显存消耗远远大于模型参数的消耗,采用激活重计算技术可将中间激活显存从O(n)减少到O(√n)。从官方给出的技术规格上来看,在模型训练中最关注的显存与算力参数完全一致,80GB版本GPU显存带宽一致。

2024-05-01 10:45:55 2181 1

原创 大模型推理资源评估方法

由于1、模型容量限制可能不足支撑专业分析任务 2、代码类的模型往往具有更大的参数量, 也对当前开源的34B与70B模型的部署进行了硬件资源需求评估。对于该模型的开发阶段,考虑微调的情况(显存消耗约为推理的3倍:12.64×3=37.92GB),需要大约1块A100/A800(40GB)或 2块V100(32GB)。模型在推理时的空转显存占用约70GB,大约需要2张A100/A800(40GB)显卡 或 1张A100/A800(80GB)或 3张V100(32GB)显卡。取决于模型的计算复杂度和硬件性能。

2024-05-01 10:33:42 1693

原创 基于LoRA对codeLLama-34B全量微调实战

微调的含义,就是把已经训练好的模型拿来,给它吃特定的下游任务数据,使得模型在预训练权重上继续训练,直至满足下游任务性能标准。全量微调指的是,在下游任务的训练中,对预训练模型的每一个参数都做更新。例如图中,给出了Transformer的Q/K/V矩阵的全量微调示例,对每个矩阵来说,在微调时,其d*d个参数,都必须参与更新。

2024-04-30 22:25:59 869

原创 如何创建高质量的本地知识库增强大模型私域任务处理能力

受训练阶段和提问的表达方式等影响,大模型不能准确理解用户意图受训练数据和时效性影响,大模型无法回答领域知识,当我们需要了解除它们训练数据以外的具体知识时,往往会达不到要求对于第一个限制,开源基础模型的理解能力不断提升,例如已开源的qwen-72B刷榜各评测榜单,对使用者的提示能力要求进一步降低,且已有能力已满足多样性任务需求,适合直接部署使用。对于第二个限制,使用检索增强生成技术(RAG,Retrieval Augmented Generation)是目前一种经济可行的方案。

2024-04-30 21:25:22 2123 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除