【状压dp】P3959 宝藏

这道题目有用的信息有我们已经把多少点加进生成树了,以及生成树的最大树高是多少。

我们可以设f[s,i]​为当前生成树已经包含集合S中的点,并且树高是i。

这样就可以推出来f[i,j]=min(f[i,j],f[i',j-1]+cost) cost 是这条边的花费

 

之后我们的操作如下:

1、预处理出对于每个点能拓展的点的状态,还有点的深度

3、枚举集合、所有需要被连向的点的最小边权求和乘深度,作为答案

4、答案就是全集在1~n深度的最小值

 

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1<<12;
const int inf=0x3f3f3f3f;
int d[12][12],f[maxn][12],g[maxn];
int n,m;
int main()
{
//	freopen("a.in","r",stdin);
//	freopen("a.out","w",stdout);
	scanf("%d%d",&n,&m);
	memset(d,0x3f,sizeof(d));
	for(int i=0;i<n;i++) d[i][i]=0;
	int x,y,z;
	while(m--)
	{
		scanf("%d%d%d",&x,&y,&z);
		x--; y--;
		d[x][y]=d[y][x]=min(d[x][y],z);
	}
	for(int s=1;s<(1<<n);s++)
		for(int j=0;j<n;j++)
			if((s>>j)&1)
			{
				for(int k=0;k<n;k++)
					if(d[j][k]!=inf)
						g[s]|=1<<k;	
			}	
	memset(f,0x3f,sizeof(f));
	for(int i=0;i<n;i++) f[1<<i][0]=0;
	for(int i=1;i<(1<<n);i++)
		for(int j=i-1;j;j=(j-1)&i)
			if((g[j]&i)==i)
			{
				int remain=i^j;
				int cost=0;
				for(int k=0;k<n;k++)
					if(remain>>k&1)
					{
						int t=inf;
						for(int u=0;u<n;u++)
							if(j>>u &1)
								t=min(t,d[k][u]);
						cost+=t;
					}
				for(int k=1;k<n;k++) f[i][k]=min(f[i][k],f[j][k-1]+cost*k);
			}
	int ans=inf;
	for(int i=0;i<n;i++) ans=min(ans,f[(1<<n)-1][i]);
	printf("%d\n",ans);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值