观察可以发现无论怎么枚举i和j,都不会使得答案小于个数,所以只要输出数组即可
#include<bits/stdc++.h>
using namespace std;
int t,n;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
printf("%d ",i);
printf("\n");
}
return 0;
}
题目要求无论行李放在哪里,最终都能传到右下角的位置上
考虑到只有→和↓两个方向,那么只有两种情况:1、能顺利到达右下角的节点 2、从最右侧/最下侧出去
即不存在在图内部形成环,因为方向只有两个
所以我们只需要修改最下侧和最右侧即可
代码
#include<bits/stdc++.h>
using namespace std;
int t,n,m;
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%d",&t);
while(t--)
{
int ans=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
getchar();
for(int j=1;j<=m;j++)
{
char cc=getchar();
if(j==m && cc=='R') ans++;
if(i==n && cc=='D') ans++;
}
}
printf("%d\n",ans);
}
return 0;
}
观察可得,只要存在i<j<k 使得 ai>aj,ak>aj 那么这个序列就是合法的
所以我们正难反解,利用整体方案数n!减去不合法的数量,也就是单峰的数量,所以峰值点的位置是固定的,之后每一个点都有放在峰值左/右两种选择,将其相乘就是,答案为
代码
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
long long n,jie,ci;
int main()
{
scanf("%lld",&n);
jie=ci=1;
for(long long i=2;i<=n;i++)
{
ci=(ci*2)%mod;
jie=(jie*i)%mod;
}
long long ans=jie-ci;
printf("%lld\n",(ans+mod)%mod);
return 0;
}
考虑两个边长都大于等于四,那么就一定不能成立,考虑到每个4x4,都是4个2x2构成的,这个4x4就一定有偶数个,矛盾。
我们只需要计算至少有一个边长小于4的情况,就可以进行状压dp了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
int n,m;
char s[maxn];
int f[5][maxn],ans;
int calc(int x)
{
int res=0;
for(int i=1;i<=m;i++)
{
if((f[1][i]+f[2][i])%2!=x) res++;
x!=x;
}
return res;
}
int calcc(int x,int y)
{
int res=0;
for(int i=1;i<=m;i++)
{
if((f[1][i]+f[2][i])%2!=x) res++;
else if((f[2][i]+f[3][i])%2!=y) res++;
x!=x; y!=y;
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
if(n>=4) printf("-1\n");
else if(n==1) printf("0\n");
else if(n==2)
{
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=m;j++)
f[i][j]=s[j]-'0';
}
ans=min(calc(0),calc(1));
printf("%d\n",ans);
}
else
{
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=m;j++)
f[i][j]=s[j]-'0';
}
ans=min(calcc(0,0),min(calcc(1,0),min(calcc(0,1),calcc(1,1))));
printf("%d\n",ans);
}
return 0;
}