Codeforces #663 (Div. 2) A-D

 

观察可以发现无论怎么枚举i和j,都不会使得答案小于个数,所以只要输出数组即可

#include<bits/stdc++.h>
using namespace std;
int t,n;
int main()
{
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
			printf("%d ",i);
		printf("\n");
	}
	return 0;
}

 

题目要求无论行李放在哪里,最终都能传到右下角的位置上

考虑到只有→和↓两个方向,那么只有两种情况:1、能顺利到达右下角的节点 2、从最右侧/最下侧出去

即不存在在图内部形成环,因为方向只有两个

所以我们只需要修改最下侧和最右侧即可

 

代码

#include<bits/stdc++.h>
using namespace std;
int t,n,m; 
int main()
{
	freopen("a.in","r",stdin);
	freopen("a.out","w",stdout);
	scanf("%d",&t);
	while(t--)
	{
		int ans=0;
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
		{
			getchar();
			for(int j=1;j<=m;j++)
			{
				char cc=getchar();
				if(j==m && cc=='R') ans++;
				if(i==n && cc=='D') ans++; 
			}
		}
		printf("%d\n",ans);		
	}
	return 0;
}

 

观察可得,只要存在i<j<k 使得 ai>aj,ak>aj 那么这个序列就是合法的

所以我们正难反解,利用整体方案数n!减去不合法的数量,也就是单峰的数量,所以峰值点的位置是固定的,之后每一个点都有放在峰值左/右两种选择,将其相乘就是2^{n-1},答案为n!-2^{n-1}

 

代码

#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
long long n,jie,ci;
int main()
{
    scanf("%lld",&n);
    jie=ci=1;
    for(long long i=2;i<=n;i++)
	{
        ci=(ci*2)%mod;
        jie=(jie*i)%mod;
    }
    long long ans=jie-ci;
    printf("%lld\n",(ans+mod)%mod);
    return 0;
}

考虑两个边长都大于等于四,那么就一定不能成立,考虑到每个4x4,都是4个2x2构成的,这个4x4就一定有偶数个,矛盾。

我们只需要计算至少有一个边长小于4的情况,就可以进行状压dp了

 

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
int n,m;
char s[maxn];
int f[5][maxn],ans;
int calc(int x)
{
	int res=0;
	for(int i=1;i<=m;i++)
	{
		if((f[1][i]+f[2][i])%2!=x) res++;
		x!=x;
	}
	return res;
}
int calcc(int x,int y)
{
	int res=0;
	for(int i=1;i<=m;i++)
	{
		if((f[1][i]+f[2][i])%2!=x) res++;
		else if((f[2][i]+f[3][i])%2!=y) res++;
		x!=x; y!=y;
	}
	return res;
}
int main()
{
	scanf("%d%d",&n,&m);
	if(n>=4) printf("-1\n");
	else if(n==1) printf("0\n");
	else if(n==2)
	{
		for(int i=1;i<=n;i++)
		{
			scanf("%s",s+1);
			for(int j=1;j<=m;j++)
				f[i][j]=s[j]-'0';
		}
		ans=min(calc(0),calc(1));
		printf("%d\n",ans);
	}
	else
	{
		for(int i=1;i<=n;i++)
		{
			scanf("%s",s+1);
			for(int j=1;j<=m;j++)
				f[i][j]=s[j]-'0';
		}
		ans=min(calcc(0,0),min(calcc(1,0),min(calcc(0,1),calcc(1,1))));
		printf("%d\n",ans);
	}
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值