机器学习之AUC评测指标

本文章参考以下链接,如有侵权,联系删除
参考

为什么要用AUC?

为什么不用准确率(accuracy)?

在二分类中,如果正反例分布不平衡,而我们对minority class 更感兴趣,这时accuracy评价指标基本没有参考价值,比如欺诈检测,癌症检测等场景。举个栗子:

在测试集里,有100个sample,99个反例,只有1个正例。如果我的模型不分青红皂白对任意一个sample都预测是反例,那么我的模型的accuracy是 正确的个数/总个数 = 99/100 = 99%。

为什么不用召回率(recall)和精确率(precision)?

召回率:把实际为真值的判断为真值的概率。
精确率:判断为真值,判断正确的概率(实际也为真值)。
recall = TP / (TP + FN)
precision = TP / (TP + FP)

一般说来,如果想要召回的多,精确率就要下降;想要精确率提升,召回的就少。因此,召回率与精确率是鱼与熊掌不可兼得

为什么不用F1分数?

F1-score 可以看做是precision和recall的综合评价指标,公式为:
在这里插入图片描述
问题就是,如果你的两个模型,一个precision特别高,recall特别低,而另一个recall特别高,precision特别低的时候,F1-score可能是差不多的,你也不能基于此来作出选择

AUC适用场景

AUC是一个用来评估分类模型性能的常见指标,优点是:

  • 适用于正负样本分布不一致的场景
  • 对于分类器性能的评价,不限定单一的分类阈值

AUC与ROC?

ROC是什么?

ROC,全名叫做Receiver Operating Characteristic(受试者操作曲线),其主要分析工具是一个画在二维平面上的曲线——ROC curve,其中,平面的横坐标是假正率(FPR),纵坐标是真正率(TPR)。

几个概念简单解释下:

真正率(TPR) = 灵敏度(Sensitivity) = 召回率把实际为真值的判断为真值的概率
特异度(Specificity):把实际为假值的判断为假值的概率。
假正率(FPR) = 1 - 特异度:把实际为假值的判断为真值的概率
TPR = TP / (TP+FN)
FPR = FP / (FP + TN
ROC曲线就是,在测试样本上根据不同的分类器阈值,计算出一系列的(FPR,TPR)点集,将其在平面图中连接成曲线,这就是ROC曲线。

画roc曲线的一个例子

假设已经得出一系列样本被划分为正类的概率,然后按照大小排序,下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。
在这里插入图片描述
接下来,我们从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第4个样本,其“Score”值为0.6,那么样本1,2,3,4都被认为是正样本,因为它们的“Score”值都大于等于0.6,而其他样本则都认为是负样本。每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图:
在这里插入图片描述

进一步理解ROC曲线

如下面这幅图,(a)图中实线为ROC曲线,线上每个点对应一个分类器阈值下(FPR,TPR)。
在这里插入图片描述
横轴表示FPR,FPR越大,预测正类中实际负类越多。
纵轴表示TPR:正类覆盖率,TPR越大,预测正类中实际正类越多。

ROC曲线必过(0, 0)和(1, 1)两个点。

  • (1, 1)点含义:判分阈值为0,所有样本都被预测为正样本,TPR=1,FPR=1。
    判分阈值逐渐增加,TPR和FPR同时减小。
  • (0, 0)点含义:判分阈值为1,所有样本都预测为负样本,TPR=0,FPR=0。

理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。

AUC与ROC的联系

虽然,ROC曲线可以评测分类器的好坏,但是,人们总是希望能有一个具体数值来作为评价指标,于是Area Under roc Curve(AUC)就出现了。

顾名思义,AUC的值就是处于ROC curve下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的performance

AUC怎么计算?

AUC有什么实际含义呢?简单来说其实就是,随机抽出一对样本(一个正样本,一个负样本),然后用训练得到的分类器来对这两个样本进行预测,预测得到正样本的概率大于负样本概率的概率,这个概率值就是AUC。

有以下两种方式计算AUC:
(1)方法一:

在有M个正样本,N个负样本的数据集里。一共有MN对样本(一对样本即,一个正样本与一个负样本)。统计这MN对样本里,正样本的预测概率大于负样本的预测概率的个数。

在这里插入图片描述
其中,
在这里插入图片描述
计算复杂度:O(M*N)。
(2)方法二:
在这里插入图片描述
其中:

(1)M, N分别是正样本和负样本的个数;

(2) r a n k i n s i rank_{ins_i} rankinsi代表第 i i i 条样本的序号。(概率得分从小到大排,排在第rank个位置)

(3) ∑ i n s i ∈ p o s i t i v e c l a s s \sum _{ins_i\in positiveclass} insipositiveclass表示把正样本的序号加起来。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值