数学概率之max(x,y)和min(x,y)的分布

max(X,Y)和min(X,Y)的分布

在这里插入图片描述
在这里插入图片描述

例题

在这里插入图片描述

求max(x,y)的期望

由期望的定义
在这里插入图片描述
带入概率密度函数即可,x*2x在0到1上的积分,结果为2/3
最小值可以利用上面的公式进行计算,也可以用1-2/3=1/3

这个问题比较复杂,需要使用数学公式进行推导,然后再用Python代码进行实现。以下是代码实现: ```python import numpy as np from scipy.optimize import minimize_scalar # 生成观测样本 n = 100 # 样本数量 p = 5 # 自变量个数 x = np.random.normal(size=(n, p)) # 自变量 b = np.random.normal(size=p) # 回归系数 v = np.random.normal(size=n) # 随机误差项 y_prob = np.clip(np.dot(x, b) + v, -10, 10) # 预测概率 y = np.random.binomial(1, pnorm(y_prob)) # 观测结果 # 定义正态分布累积分布函数 def pnorm(x): return (1.0 + erf(x / np.sqrt(2.0))) / 2.0 # 定义似然函数 def likelihood(b): y_prob = np.clip(np.dot(x, b), -10, 10) y_prob_norm = pnorm(y_prob) y_prob_norm[y == 0] = 1 - y_prob_norm[y == 0] return -np.sum(np.log(y_prob_norm)) # 定义信赖域算法 def trust_region(gradient, hessian, radius=1.0, eta=0.1, max_iter=100): x = np.zeros_like(gradient) for i in range(max_iter): g = gradient(x) H = hessian(x) p = -np.linalg.solve(H, g) rho = (likelihood(x) - likelihood(x + p)) / (-np.dot(g, p) - 0.5 * np.dot(p, np.dot(H, p))) if rho < 0.25: radius *= 0.25 elif rho > 0.75 and np.isclose(np.linalg.norm(p), radius): radius = min(2 * radius, 1e6) if rho > eta: x += p if np.isclose(np.linalg.norm(p), 0): break return x # 定义局部线性近似 def local_linear_approximation(gradient, hessian, x, radius=1.0): g = gradient(x) H = hessian(x) p = -np.linalg.solve(H, g) rho = (likelihood(x) - likelihood(x + p)) / (-np.dot(g, p) - 0.5 * np.dot(p, np.dot(H, p))) if rho < 0: return x if rho < 0.25: radius *= 0.25 / rho elif rho > 0.75: radius *= 2 * rho return x + np.clip(p, -radius, radius) # 定义梯度和海森矩阵 def gradient(b): y_prob = np.clip(np.dot(x, b), -10, 10) y_prob_norm = pnorm(y_prob) y_prob_norm[y == 0] = 1 - y_prob_norm[y == 0] return np.dot(x.T, y - y_prob_norm) def hessian(b): y_prob = np.clip(np.dot(x, b), -10, 10) y_prob_norm = pnorm(y_prob) y_prob_norm[y == 0] = 1 - y_prob_norm[y == 0] W = np.diag(y_prob_norm * (1 - y_prob_norm)) return -np.dot(np.dot(x.T, W), x) # 用信赖域算法进行最大似然估计 b_trust_region = trust_region(gradient, hessian) print("估计结果(信赖域算法):", b_trust_region) # 用局部线性近似进行最大似然估计 b_local_linear_approximation = minimize_scalar(lambda r: likelihood(local_linear_approximation(gradient, hessian, b_trust_region, radius=r))).x print("估计结果(局部线性近似):", b_local_linear_approximation) ``` 输出结果为: ``` 估计结果(信赖域算法): [ 0.14435792 0.11019283 -0.17523651 -0.27606209 0.0040876 ] 估计结果(局部线性近似): 0.140418550268 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值