浅聊宜昌工业AI应用
文章平均质量分 88
浅聊宜昌工业AI应用
andyyah晓波
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
浅聊宜昌工业AI应用-4.智能体的实际应用
实施案例在宜昌某装备制造企业的应用效果:- 项目周期: 3个月- 部署设备: 8套视觉检测单元- 实施效果: 产品不良率降低65%,检测效率提升300%- 投资回报: 6个月内收回成本原创 2025-06-10 19:38:25 · 855 阅读 · 0 评论 -
浅聊宜昌工业AI应用-3.工业质检“火眼金睛”上线,缺陷漏洞一网打尽
在制造业中,尤其是劳动力密集型的家电行业,生产自动化水平尚有待提高。这些行业的生产制造主要依赖人工,导致质检环节存在诸多限制。这不仅增加了人力和培训成本,还提高了漏检和误检的风险,限制了检测的精确度。尽管一些企业已经开始引入视觉检测设备、工业机器人和安全作业监控等技术,但这些解决方案通常需要结合工控机和工业相机,存在部署不便和成本高昂的问题,尤其是在复杂的生产线中。原创 2025-05-25 21:38:07 · 686 阅读 · 0 评论 -
浅聊宜昌工业AI应用-2.工业质检智能化革命
【摘要】RK3576边缘计算机正推动工业质检智能化变革。其搭载8nm工艺芯片,集成6TOPS NPU算力,将检测延迟压缩至50ms,支持4K视频实时分析。通过异构计算架构与RKNN-Toolkit2工具链,可高效部署YOLOv5等模型,在PCB焊锡检测(精度99.7%)、汽车轮毂测量(误差±0.02mm)等场景实现8倍效率提升。该技术突破传统云端依赖,结合5G+MEC架构,未来将向多模态融合、联邦学习方向发展,预计2025年边缘AI质检市场份额将达35%。原创 2025-05-25 20:56:06 · 591 阅读 · 0 评论 -
浅聊宜昌工业AI应用-1.NPU 基础
为了进一步提高 GPU 在 AI 领域的性能,厂商们也在不断对 GPU 的架构进行优化,如英伟达推出了专门为深度学习优化的 Tensor Core 技术,可以大幅提高矩阵运算的速度。同时,端侧部署也对 AI 芯片的功耗和成本提出了更高的要求。例如,集成 CPU、GPU、NPU 等多种计算单元的 AI 芯片,可以在训练和推理任务中发挥各自的优势,提供更加全面和高效的 AI 计算能力。随着神经网络模型的规模不断增大,其应用快速发展,训练和推理所需的计算量呈指数级增长,传统的通用芯片已无法满足性能和功耗的要求。原创 2025-05-22 20:26:29 · 843 阅读 · 0 评论
分享