yolov9 服务器快速部署,pytroch版本

本文介绍了如何从GitHub克隆并安装yolov9代码,包括创建新环境、安装PyTorch与相关库,以及如何通过requirements.txt进行依赖管理。重点强调了在训练过程中可能需要调整的参数以避免文件路径问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码地址:https://github.com/WongKinYiu/yolov9

文章地址:https://arxiv.org/abs/2402.13616

环境安装

v9 代码部署

 git clone https://github.com/WongKinYiu/yolov9.git
 cd yolov9

创建名为v9的环境,python版本3.7

conda create -n v9 python=3.7

激活环境

conda activate v9

pytorch版本安装https://pytorch.org/get-started/locally/,要和自己的cuda版本一致,我用的是1.7的。

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch

通过requirements.txt来安装环境

pip install -r requirements.txt

训练,注意在train.py中的训练默认参数修改,比如data,cfg等,尤其是含有ROOT的,不然会出现File not found:......之类的问题。

python train.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值