Power Iteration算法-Hessian矩阵特征值

在这里插入图片描述
利用幂迭代法,计算黑塞矩阵的特征值。上图中V是随意选的与 W i W_i Wi同维度的向量,利用1-n代梯度 g i g_i gi,H为黑塞阵。最后i=n时,
H v = d ( g v ) d W n = d ( g n T v ) d W n Hv=\frac{d(gv)}{dW_n}=\frac{d(g_{n}^{T}v)}{dW_n} Hv=dWnd(gv)=dWnd(gnTv)
v = H v ∣ ∣ H v ∣ ∣ v=\frac{Hv}{||Hv||} v=HvHv
可以求得特征值为
λ = v T H v v T v \lambda=\frac{v^{T}Hv}{v^{T}v} λ=vTvvTHv

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值