利用幂迭代法,计算黑塞矩阵的特征值。上图中V是随意选的与
W
i
W_i
Wi同维度的向量,利用1-n代梯度
g
i
g_i
gi,H为黑塞阵。最后i=n时,
H
v
=
d
(
g
v
)
d
W
n
=
d
(
g
n
T
v
)
d
W
n
Hv=\frac{d(gv)}{dW_n}=\frac{d(g_{n}^{T}v)}{dW_n}
Hv=dWnd(gv)=dWnd(gnTv)
v
=
H
v
∣
∣
H
v
∣
∣
v=\frac{Hv}{||Hv||}
v=∣∣Hv∣∣Hv
可以求得特征值为
λ
=
v
T
H
v
v
T
v
\lambda=\frac{v^{T}Hv}{v^{T}v}
λ=vTvvTHv
Power Iteration算法-Hessian矩阵特征值
最新推荐文章于 2024-10-02 19:24:34 发布