题目大意:有n+1个格子, m个飞机,一个人从第0个格子出发,每次通过掷骰子来确定他的位置,若得到的值为k (k=1,2…6),则下次将在第(0+k)个格子处。若飞机的作用位置为(x,y)(x<y),则意味着此人在 x 处不需要掷骰子,直接到达 y 处。求此人从第0个格子到达第n个格子掷骰子数的期望。
解题思路:用邻接表存储飞机的作用位置, 用dp[i] 表示此人在第i个格子处,到达第n个格子所需掷骰子数的期望。从后往前推,显然 dp[n] = 0。如果有一个飞机的作用位置为(i,j);则dp[i] = dp[j] ; 否则 dp[i] = dp[i+1] / 6 + dp[i + 2] / 6 + … + dp[i+6] / 6.
代码实现:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#define N 100020
struct node{
int from;
int to;
int next;
}edge[N];
int tot;
double dp[N];
int head[N];
bool vis[N];
void add(int u, int v)
{
edge[tot].from = v;
edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot ++;
}
void init()
{
memset(dp, 0, sizeof(dp));
memset(vis, false, sizeof(vis));
memset(head, -1, sizeof(head));
tot = 0;
}
int main()
{
int n, m;
while(~scanf("%d %d", &n, &m) && n + m)
{
init();
while(m --)
{
int u, v;
scanf("%d %d", &u, &v);
add(u, v);
}
dp[n] = -1;
for(int i = n; i >= 0; i --)
{
if(!vis[i])
{
for(int j = i +1; j <= i + 6; j ++)
{
dp[i] += (dp[j] / 6.0);
}
dp[i] += 1;
vis[i] = true;
}
for(int j = head[i]; j != -1; j = edge[j].next)
{
int tmp = edge[j].to;
dp[tmp] = dp[i];
vis[tmp] = true;
}
}
printf("%.4lf\n", dp[0]);
}
return 0;
}