题目大意:给出Harry可以抢劫的银行数n,和被抓到的概率p,求在Harry不被抓到的情况下,他最多能够抢多少钱
解题思路:概率dp,状态转移方程:dp[ i ] [ j ] = min( dp [ i-1 ] [ j ] ,dp [ i-1 ] [ j- a[i] ] + (1 - dp [ i-1 ] [ j- a[i] ]) * p[i] )。其中dp[i][j]表示抢劫前 i 个银行得到钱数为 j时 被抓到的概率。
代码如下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
double f[105][10005];
int main()
{
int t;
int n, a[105];
double pp, p[105];
scanf("%d", &t);
for(int i = 1; i <= t; i ++)
{
scanf("%lf %d",&pp, &n);
int sum = 0;
for(int j = 1; j <= n;j ++)
{
scanf("%d %lf", &a[j], &p[j]);
sum += a[j];
}
for(int j = 1;j <= sum; j++) f[0][j]=-1;
f[0][0]=0;
for(int j = 1; j <= n; j ++)
{
for(int z = 0; z <= sum; z ++)
{
if(z - a[j] < 0 || f[j-1][z-a[j]] < 0) f[j][z] = f[j-1][z];
else if(f[j-1][z] < 0) f[j][z] = f[j-1][z-a[j]] + (1-f[j-1][z-a[j]]) * p[j];
else f[j][z] = min(f[j-1][z], f[j-1][z-a[j]] + (1-f[j-1][z-a[j]]) * p[j]);
}
}
int ans = 0;
for(int j = 0; j <= sum; j ++)
{
if(f[n][j] < pp && f[n][j] >= 0) ans = j;
}
printf("Case %d: %d\n", i, ans);
}
return 0;
}