lightOJ 1079 Just another Robbery

题目大意:给出Harry可以抢劫的银行数n,和被抓到的概率p,求在Harry不被抓到的情况下,他最多能够抢多少钱


解题思路:概率dp,状态转移方程:dp[ i ] [ j ] = min( dp [ i-1 ] [ j ] ,dp [ i-1 ] [ j- a[i] ] + (1 - dp [ i-1 ] [ j- a[i] ]) * p[i] )。其中dp[i][j]表示抢劫前 i 个银行得到钱数为 j时 被抓到的概率。


代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
double f[105][10005];
int  main()
{
     int t;
     int n, a[105];
     double pp, p[105];

     scanf("%d", &t);
     for(int i = 1; i <= t; i ++)
     {
             scanf("%lf %d",&pp, &n);
             int sum = 0;
             for(int j = 1; j <= n;j ++)
             {
                     scanf("%d %lf", &a[j], &p[j]);
                     sum += a[j];
             }
             for(int j = 1;j <= sum; j++)   f[0][j]=-1;
             f[0][0]=0;

             for(int j = 1; j <= n; j ++)
             {
                     for(int z = 0; z <= sum; z ++)
                     {
                             if(z - a[j] < 0 || f[j-1][z-a[j]] < 0) f[j][z] = f[j-1][z];
                             else if(f[j-1][z] < 0) f[j][z] = f[j-1][z-a[j]] + (1-f[j-1][z-a[j]]) * p[j];
                             else f[j][z] = min(f[j-1][z], f[j-1][z-a[j]] + (1-f[j-1][z-a[j]]) * p[j]);

                     }
             }
             int ans = 0;
             for(int j = 0; j <= sum; j ++)
             {
                     if(f[n][j] < pp && f[n][j] >= 0) ans = j;
             }
             printf("Case %d: %d\n", i, ans);
     }

     return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值