Mac M4 安装RAGFlow+ollama本地大模型踩坑经历

修改 Docker 配置文件添加镜像源地址

为了使 Docker 使用更快捷的镜像仓库服务,可以通过编辑 /etc/docker/daemon.json 文件实现。此文件用于指定一系列可信任的镜像服务器作为代理。

安装ragflow:

安装操作如下(https://github.com/infiniflow/ragflow/issues/5012)

git clone <https://github.com/infiniflow/ragflow.git>
cd ragflow/
pip3 install huggingface_hub nltk
python3 download_deps.py

在python3 download_deps.py步遇到huggingface_hub.errors.LocalEntryNotFoundError,由于国内IP无法登录Huggingface导致。解决方法:

pip install -U huggingface_hub hf_transfer -i <https://pypi.tuna.tsinghua.edu.cn/simple>
export HF_ENDPOINT=https://hf-mirror.com
#重新运行python3 download_deps.py即可

若docker build 过程中出现

ERROR: failed to solve: ubuntu:22.04: failed to resolve source metadata for docker.io/library/ubuntu:22.04: failed commit on ref "unknown-sha256:…": failed size validation: 7611 != 7283: failed precondition

有可能是版本冲突导致,可以使用以下代码清理docker cache

# Ensure You Have the Latest Version of Docker
#Remove Unused Data:
docker system prune -a
docker builder prune

# Force a Manual Pull of the Base Image
docker pull --platform linux/arm64 ubuntu:22.04
docker pull --platform linux/amd64 ubuntu:22.04
docker build -f Dockerfile.deps -t infiniflow/ragflow_deps .
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
# Edit .env before run this
docker compose -f docker/docker-compose-macos.yml up -d

出现es01运行不起来反复开启关闭,修改 service.environment in docker/docker-compose-base.yml :

environment:
- node.name=es01
- ELASTIC_PASSWORD=${ELASTIC_PASSWORD}
- bootstrap.memory_lock=false
- discovery.type=single-node
- xpack.security.enabled=true
- xpack.security.http.ssl.enabled=false
- xpack.security.transport.ssl.enabled=false
- cluster.routing.allocation.disk.watermark.low=5gb
- cluster.routing.allocation.disk.watermark.high=3gb
- cluster.routing.allocation.disk.watermark.flood_stage=2gb
- TZ=${TIMEZONE}
- "ES_JAVA_OPTS=-XX:UseSVE=0"
- "CLI_JAVA_OPTS=-XX:UseSVE=0"

链接RAGFLOW与Ollama

  • 修改ollama host,确保可以访问: launchctl setenv OLLAMA_HOST "0.0.0.0:11434”,然后重启重新运行ollama

  • 浏览器浏览网址https://localhost:80 打开ragflow界面注册

  • 点击model provider,链接ragflow和ollama,也可以通过API接口连接sliconflow

  • 配置系统模型

### Mac Mini M4 大模型兼容性及性能表现 对于需要处理大规模深度学习模型的任务而言,Mac Mini M4 并不是一个理想的平台。这主要是因为其硬件配置并不适合执行高强度的计算工作负载[^1]。 #### 硬件局限性 M系列芯片虽然在日常办公和一些轻度编程场景下表现出色,但在面对大型神经网络训练时存在明显不足。具体表现在以下几个方面: - **GPU能力有限**:尽管Apple Silicon拥有集成图形处理器,但对于复杂模型所需的并行运算支持不够强大; - **内存容量较小**:大多数版本仅配备8GB RAM,在加载庞大尺寸的数据集或预训练权重文件时容易遇到瓶颈; - **扩展性和灵活性差**:由于操作系统封闭特性以及缺乏对某些开源框架的良好适配,使得部署特定类型的AI应用变得困难。 因此,如果目标是进行高效稳定的大规模机器学习项目开发,则建议考虑其他更专业的解决方案,比如采用NVIDIA GPU加速器搭配Linux服务器架构,或是利用云端服务提供商所供应的强大算力资源来满足需求。 然而值得注意的是,当涉及到较为简单的推理过程、小型实验性质的研究活动或者是初步原型验证阶段时,Mac Mini M4仍然可以作为一种便捷的选择用于快速测试想法和技术方案可行性评估等方面的工作[^2]。 ```python import torch print(torch.cuda.is_available()) # 检查CUDA是否可用, 对于Mac Mini M4通常是False ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值