splay与lct

splay

void rotate(int o) {
    if (!o || !t[o].fa) return;
    int f = t[o].fa, g = t[f].fa;
    if (g) {
        if (ck(f)) t[g].ls = o;
        else t[g].rs = o;
    }
    t[o].fa = g;
    if (ck(o)) {
        t[f].ls = t[o].rs;
        if (t[o].rs) t[t[o].rs].fa = f;
        t[o].rs = f;
    }
    else {
        t[f].rs = t[o].ls;
        if (t[o].ls) t[t[o].ls].fa = f;
        t[o].ls = f;
    }
    t[f].fa = o;
    pushup(f); pushup(o);
}

void splay(int o, int goal = 0) {
    if (!o || t[o].fa == goal) return;
    int f = t[o].fa, g = t[f].fa;
    if (g != goal) {
        if (ck(o) == ck(f)) rotate(f);
        else rotate(o);
    }
    rotate(o);
    splay(o, goal);
    if (!goal) root = o;
}

void insert(int& o, int x, int fa = 0) {
    if (!o) {
        o = ++tot;
        t[o] = { 0, 0, fa, 1, x };
        splay(o);
        return;
    }
    if (x <= t[o].val) insert(t[o].ls, x, o);
    else insert(t[o].rs, x, o);
    pushup(o);
}

int nex(int o, int x, int type) {
    if (!o) return 0;
    if ((type && t[o].val <= x) || (!type && t[o].val >= x))
        return nex(type ? t[o].rs : t[o].ls, x, type);
    int res = nex(type ? t[o].ls : t[o].rs, x, type);
    return res ? res : o;
}

void del(int x) {
    int pre = nex(root, x, 0);
    int nxt = nex(root, x, 1);
    splay(pre); splay(nxt, pre);
    t[nxt].ls = 0;
    pushup(nxt); pushup(pre);
}
// 按值分裂:将树分为<=p的l和>p的r
void split(int p, int& l, int& r) {
    if (!root) { l = r = 0; return; }
    splay(p); // 将p旋转到根
    if (t[p].val <= p) {
        l = p;
        r = t[p].rs;
        t[r].fa = 0;
        t[p].rs = 0;
    } else {
        r = p;
        l = t[p].ls;
        t[l].fa = 0;
        t[p].ls = 0;
    }
    pushup(p);
}

// 合并两棵树(l的所有节点<r的所有节点)
int merge(int l, int r) {
    if (!l) return r;
    if (!r) return l;
    // 找到l的最大节点并splay到根
    int u = l;
    while (t[u].rs) u = t[u].rs;
    splay(u);
    // 连接r作为右子树
    t[u].rs = r;
    t[r].fa = u;
    pushup(u);
    return u;
}

lct

P3690 【模板】动态树(LCT)

题目描述

给定 n n n 个点以及每个点的权值,要你处理接下来的 m m m 个操作。
操作有四种,操作从 0 0 0 3 3 3 编号。点从 1 1 1 n n n 编号。

  • 0 x y 代表询问从 x x x y y y 的路径上的点的权值的 xor \text{xor} xor 和。保证 x x x y y y 是联通的。
  • 1 x y 代表连接 x x x y y y,若 x x x y y y 已经联通则无需连接。
  • 2 x y 代表删除边 ( x , y ) (x,y) (x,y),不保证边 ( x , y ) (x,y) (x,y) 存在。
  • 3 x y 代表将点 x x x 上的权值变成 y y y

输入格式

第一行两个整数,分别为 n n n m m m,代表点数和操作数。

接下来 n n n 行,每行一个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 a i a_i ai 表示节点 i i i 的权值。

接下来 m m m 行,每行三个整数,分别代表操作类型和操作所需的量。

输出格式

对于每一个 0 0 0 号操作,你须输出一行一个整数,表示 x x x y y y 的路径上点权的 xor \text{xor} xor 和。

#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 5;
struct node { 
    int fa, ch[2], sum, val, lazy; 
} t[N]; // lazy用来标记reverse()的左右翻转
#define lc t[x].ch[0] // 左儿子
#define rc t[x].ch[1] // 右儿子

bool isRoot(int x) {
    int g = t[x].fa;
    return t[g].ch[0] != x && t[g].ch[1] != x; // 若为根,则父节点不应该有这个儿子
}

void pushup(int x) { // 本题求路径异或和.上传信息
    t[x].sum = t[x].val ^ t[lc].sum ^ t[rc].sum;
}

void reverse(int x) {
    if (!x) return;
    swap(lc, rc); // 翻转x的左右儿子
    t[x].lazy ^= 1; // Lazy标记,先不翻转儿子的后代,后面再翻转
}

void pushdown(int x) { // 递归翻转x的儿子的后代,并释放Lazy标记
    if (t[x].lazy) {
        reverse(lc);
        reverse(rc);
        t[x].lazy = 0;
    }
}

void push(int x) {
    if (!isRoot(x)) push(t[x].fa); // 从根到x全部翻转
    pushdown(x);
}

void rotate(int x) {
    int y = t[x].fa;
    int z = t[y].fa;
    int k = t[y].ch[1] == x;
    if (!isRoot(y)) t[z].ch[t[z].ch[1] == y] = x;
    t[x].fa = z;
    t[y].ch[k] = t[x].ch[k ^ 1];
    if (t[x].ch[k ^ 1]) t[t[x].ch[k ^ 1]].fa = y;
    t[y].fa = x;
    t[x].ch[k ^ 1] = y;
    pushup(y);
    pushup(x);
}

void splay(int x) { // 提根: 把x旋转为它所在的Splay树的根
    int y, z;
    push(x); // 先翻转处理x的所有子孙的Lazy标记
    while (!isRoot(x)) {
        y = t[x].fa, z = t[y].fa;
        if (!isRoot(y))
            (t[z].ch[0] == y) ^ (t[y].ch[0] == x) ? rotate(x) : rotate(y);
        rotate(x);
    }
    pushup(x);
}

void access(int x) { // 在原树上建一条实链,起点是根,终点是x
    for (int child = 0; x; child = x, x = t[x].fa) { // 从x向上走,沿着虚边走
        splay(x);
        rc = child; // 右孩子是child,建立了一条实边
        pushup(x);
    }
}

void makeroot(int x) { // 把x在原树上旋转到根的位置
    access(x);
    splay(x);
    reverse(x);
}

void split(int x, int y) { // 把原树上以x为起点,以y为终点的路径,生成一条实链
    makeroot(x);
    access(y);
    splay(y);
}
int findroot(int x) { // 查找x在原树上的根
    access(x);
    splay(x);
    while (lc) pushdown(x), x = lc; // 找Splay树最左端的节点
    splay(x);
    return x;
}
void link(int x, int y) { // 在节点x和y之间连接一条边
    makeroot(x);
    if (findroot(y) != x) t[x].fa = y;
}

void cut(int x, int y) { // 将x,y的边切断
    makeroot(x);
    if (findroot(y) == x && t[y].fa == x && !t[y].ch[0]) {
        t[y].fa = t[x].ch[1] = 0;
        pushup(x);
    }
}



int main() {
    int n, m; 
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; ++i) { 
        scanf("%d", &t[i].val); 
        t[i].sum = t[i].val; 
    }
    while (m--) {
        int opt, a, b; 
        scanf("%d%d%d", &opt, &a, &b);
        switch (opt) {
            case 0: 
                split(a, b); 
                printf("%d\n", t[b].sum); 
                break;
            case 1: 
                if (findroot(a) != findroot(b)) link(a, b); 
                break;
            case 2: 
                cut(a, b); 
                break;
            case 3: 
                splay(a); 
                t[a].val = b; 
                pushup(a); 
                break;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值