Spark04: Transformation与Action开发

本文详细介绍了Spark中创建RDD的三种方式:集合、本地文件和HDFS文件,并通过Scala和Java代码示例展示了Transformation(如map、filter、reduceByKey等)和Action(如reduce、collect、saveAsTextFile)的基本用法,同时解释了Transformation的lazy特性和Action触发任务执行的原理。
摘要由CSDN通过智能技术生成

一、创建RDD的三种方式

RDD是Spark编程的核心,在进行Spark编程时,首要任务是创建一个初始的RDD这样就相当于设置了Spark应用程序的输入源数据然后在创建了初始的RDD之后,才可以通过Spark 提供的一些高阶函数,对这个RDD进行操作,来获取其它的RDD。

Spark提供三种创建RDD方式:集合、本地文件、HDFS文件

  • 使用程序中的集合创建RDD,主要用于进行测试,可以在实际部署到集群运行之前,自己使用集合构造一些测试数据,来测试后面的spark应用程序的流程。
  • 使用本地文件创建RDD,主要用于临时性地处理一些存储了大量数据的文件。
  • 使用HDFS文件创建RDD,是最常用的生产环境的处理方式,主要可以针对HDFS上存储的数据,进行离线批处理操作。

1. 使用集合创建RDD

如果要通过集合来创建RDD,需要针对程序中的集合,调用SparkContext的parallelize()方法。Spark会将集合中的数据拷贝到集群上,形成一个分布式的数据集合,也就是一个RDD。相当于,集合中的部分数据会到一个节点上,而另一部分数据会到其它节点上。然后就可以用并行的方式来操作这个分布式数据集合了。

调用parallelize()时,有一个重要的参数可以指定,就是将集合切分成多少个partition。Spark会为每一个partition运行一个task来进行处理。Spark默认会根据集群的配置来设置partition的数量。我们也可以在调用parallelize()方法时,传入第二个参数,来设置RDD的partition数量,例如:parallelize(arr, 5)

引入依赖:

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.4.3</version>
<!--            <scope>provided</scope>-->
        </dependency>

Scala代码:

package com.sanqian.scala

import org.apache.spark.{SparkConf, SparkContext}

object CreateRddByArrayScala {
  def main(args: Array[String]): Unit = {
    //创建SparkContext
    val conf = new SparkConf()
    conf.setAppName("CreateRddByArray").setMaster("local")
    val sc = new SparkContext(conf)
    //创建集合
    val arr = Array(1, 2, 3, 4, 5)
    //基于集合创建RDD
    val rdd = sc.parallelize(arr)
    //对集合中的元素求和
    val sum = rdd.reduce(_ + _)

    //注意:这行println代码是在driver进程中执行的
    println(sum)
  }
}

注意:val arr = Array(1,2,3,4,5)还有println(sum)代码是在driver进程中执行的,这些代码不会并行执行,parallelize还有reduce之类的操作是在worker节点中执行的

Java代码:

package com.sanqian.java;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;

import java.util.Arrays;
import java.util.List;

public class CreateRddByArrayJava {
    public static void main(String[] args) {
        //创建JavaSparkContext
        SparkConf conf = new SparkConf();
        conf.setAppName("CreateRddByArrayJava").setMaster("local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        //创建集合
        List<Integer> arr = Arrays.asList(1, 2, 3, 4, 5);
        JavaRDD<Integer> rdd = sc.parallelize(arr);
        Integer sum = rdd.reduce(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        });

        System.out.println(sum);

        sc.stop();
    }
}

2. 使用本地文件和HDFS文件创建RDD

  • 通过SparkContext的textFile()方法,可以针对本地文件或HDFS文件创建RDD,RDD中的每个元素就是文件中的一行文本内容
  • textFile()方法支持针对目录、压缩文件以及通配符创建RDD。
  • Spark默认会为HDFS文件的每一个Block创建一个partition,也可以通过textFile()的第二个参数手动设置分区数量,只能比Block数量多,不能比Block数量少,比Block数量少的话你的设置是不生效的

 Scala代码:

package com.sanqian.scala

import org.apache.spark.{SparkConf, SparkContext}

object CreateRddByFileScala {
  def main(args: Array[String]): Unit = {
    //创建SparkContext
    val conf = new SparkConf()
    conf.setAppName("CreateRddByArray").setMaster("local")
    val sc = new SparkContext(conf)

    var path = "D:\\data\\words.txt"
    path = "hdfs://bigdata01:9000/words.txt"
    val rdd = sc.textFile(path)
    val length = rdd.map(_.length).reduce(_ + _)
    println(length)
    sc.stop()
  }
}

Java代码:

package com.sanqian.java;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

import java.util.Arrays;
import java.util.List;

public class CreateRddByFileJava {
    public static void main(String[] args) {
        //创建JavaSparkContext
        SparkConf conf = new SparkConf();
        conf.setAppName("CreateRddByArrayJava").setMaster("local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        //创建集合
        String path = "D:\\data\\words.txt";
        path = "hdfs://bigdata01:9000/words.txt";
        JavaRDD<String> rdd = sc.textFile(path, 2);

        //获取每一行数据的长度
        JavaRDD<Integer> numRDD = rdd.map(new Function<String, Integer>() {
            @Override
            public Integer call(String s) throws Exception {
                return s.length();
            }
        });
        //计算文件内数据的总长度
        Integer sum = numRDD.reduce(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        });

        System.out.println(sum);

        sc.stop();
    }
}

 二、Transformation和Action介绍

 Spark对RDD的操作可以整体分为两类:

  • Transformation和Action这里的Transformation可以翻译为转换,表示是针对RDD中数据的转换操作,主要会针对已有的RDD创建一个新的RDD:常见的有map、flatMap、filter等等
  • Action可以翻译为执行,表示是触发任务执行的操作,主要对RDD进行最后的操作,比如遍历、reduce、保存到文件等,并且还可以把结果返回给Driver程序

不管是Transformation操作还是Action操作,一般会把它们称之为算子,例如:map算子,reduce算子。

其中Transformation算子有一个特性:lazy,lazy特性在这里指的是,如果一个spark任务中只定义了transformation算子,那么即使你执行这个任务,任务中的算子也不会执行。也就是说,transformation是不会触发spark任务的执行,它们只是记录了对RDD所做的操作,不会执行。只有当transformation之后,接着执行了一个action操作,那么所有的transformation才会执行。Spark通过lazy这种特性,来进行底层的spark任务执行的优化,避免产生过多中间结果。

Action的特性:执行Action操作才会触发一个Spark任务的运行,从而触发这个Action之前所有的
Transformation的执行。

三、常用Transformation介绍

那下面我们先来看一下Spark中的Transformation算子

1.官方文档


先来看一下官方文档,进入2.4.3的文档界面

 

 2. 常用算子

算子介绍
map将RDD中的每个元素进行处理,一进一出
filter对RDD中每个元素进行判断,返回true则保留
flatMap与map类似,但是每个元素都可以返回一个或多个新元素
groupByKey根据key进行分组,每个key对应一个Iterable<value>
reduceByKey对每个相同key对应的value进行reduce操作
sortByKey对每个相同key对应的value进行排序操作(全局排序)
join对两个包含<key,value>对的RDD进行join操作
distinct对RDD中的元素进行全局去重

3. Transformation操作开发实战

  • map:对集合中每个元素乘以2
  • filter:过滤出集合中的偶数
  • flatMap:将行拆分为单词
  • groupByKey:对每个大区的主播进行分组
  • reduceByKey:统计每个大区的主播数量
  • sortByKey:对主播的音浪收入排序
  • join:打印每个主播的大区信息和音浪收入
  • distinct:统计当天开播的大区信息

4. Scala代码:

package com.sanqian.scala

import org.apache.spark.{SparkConf, SparkContext}

/**
 * 需求:transformation 实战
 * map: 对集合中的每个元素乘以2
 * filter: 过滤出集合中的偶数
 * flatMap: 将行拆分为单词
 * groupByKey:对每个大区的主播进行分组
 * reduceByKey: 统计每个大区的主播数量
 * sortByKey: 对主播的音浪收入排序
 * join: 打印每个主播的大区信息和音浪收入
 * distinct: 统计当天开播的主播数量
 */
object TransformationOpScala {


  def main(args: Array[String]): Unit = {
    val sc = getSparkContext
    //map: 对集合中的每个元素乘以2
    //    mapOp(sc)
    //filter: 过滤出集合中的偶数
    //    filterOp(sc)
    //flatMap: 将行拆分为单词
    //    flatMapOp(sc)

    //groupByKey:对每个大区的主播进行分组
//    groupByKeyOp2(sc)
    //reduceByKey: 统计每个大区的主播数量
//    reduceBykeyOp(sc)
    //sortByKey: 对主播的音浪收入排序
//    sortByKeyOp(sc)
    //join: 打印每个主播的大区信息和音浪收入
//    joinOp(sc)
    //distinct: 统计当天开播的大区信息
    distinctOp(sc)
  }
  def distinctOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array((150001, "US"), (150002, "CN"), (15003, "CN"), (15004, "IN")))
    //由于是统计开播的大区信息,需要根据大区信息去重,所以只保留大区信息
    rdd.map(_._2).distinct().foreach(println(_))
  }

  def joinOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array((150001, "US"), (150002, "CN"), (15003, "CN"), (15004, "IN")))
    val rdd2 = sc.parallelize(Array((150001, 400), (150002, 200), (15003, 300), (15004, 100)))

    rdd.join(rdd2).foreach(tup => {
      //用户id
      val uid = tup._1
      val area_gold = tup._2
      println(uid + "\t" + area_gold._1 +"\t" + area_gold._2)
    })
  }

  def sortByKeyOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array((150001, 400), (150002, 200), (15003, 300), (15004, 100)))
//    rdd.map(tup => (tup._2, tup._1)).sortByKey(ascending = false)
//    .foreach(println(_))
    //sortBy的使用,可以动态指定排序字段比较灵活
    rdd.sortBy(_._2, ascending = false).foreach(println(_))
  }
  def reduceBykeyOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array((150001, "US"), (150002, "CN"), (15003, "CN"), (15004, "IN")))
    rdd.map(tup => (tup._2, 1)).reduceByKey(_ + _).foreach(println(_))
  }

  def groupByKeyOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array((150001, "US"), (150002, "CN"), (15003, "CN"), (15004, "IN")))
    rdd.map(tup => (tup._2, tup._1)).groupByKey().foreach(tup => {
      //获取大区信息
      val area = tup._1
      print(area + ":")
      //获取同一个大区对应的所有用户id
      val it = tup._2
      for (uid <- it) {
        print(uid + " ")
      }
      println()
    })
  }
  // 如果tuple中的数据列超过了2列怎么办?
  // 把需要作为key的那一列作为tuple2的第一列,剩下的可以再使用tuple2包装一下
  //注意:如果你的数据结构比较复杂,可以在执行每一个算子之后都调用foreach打印一下,确认数据的格式
  def groupByKeyOp2(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array((150001, "US", "male"), (150002, "CN", "female"), (15003, "CN", "male"), (15004, "IN", "male")))
    rdd.map(tup => (tup._2, (tup._1, tup._3))).groupByKey().foreach(tup => {
      //获取大区信息
      val area = tup._1
      print(area + ":")
      //获取同一个大区对应的所有用户id
      val it = tup._2
      for ((uid, sex) <- it) {
        print("<" + uid + "," + sex + "> ")
      }
      println()
    })
  }

  def mapOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5))
    rdd.map(_ * 2).foreach(println(_))
  }

  def flatMapOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array("good good study", "day day up"))
    rdd.flatMap(_.split(" ")).foreach(println(_))
  }

  def filterOp(sc: SparkContext): Unit = {
    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5))
    //满足条件的保存下来
    rdd.filter(_ % 2 == 0).foreach(println(_))
  }

  def getSparkContext = {
    //创建SparkContext
    val conf = new SparkConf()
    conf.setAppName("TransformationOpScala").setMaster("local")
    new SparkContext(conf)
  }
}

5. Java代码:

package com.sanqian.java;

import jdk.nashorn.internal.ir.FunctionCall;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.*;
import scala.Tuple2;
import scala.Tuple3;

import java.util.Arrays;
import java.util.Iterator;

public class TransformationOpJava {
    public static void main(String[] args) {
        JavaSparkContext sc = getSparkContext();
        //map: 对集合中的每个元素乘以2
//        mapOp(sc);
        //filter: 过滤出集合中的偶数
//        filterOp(sc);
        //flatMap: 将行拆分为单词
//        flatMapOp(sc);
        //groupByKey:对每个大区的主播进行分组
//        groupByKeyOp(sc);
//        groupByKeyOp2(sc);
        //reduceByKey: 统计每个大区的主播数量
//        reduceByKeyOp(sc);
        //sortByKey: 对主播的音浪收入排序
//        sortByKeyOp(sc);
        //join: 打印每个主播的大区信息和音浪收入
//        joinOp(sc);
        //distinct: 统计每个大区的主播
        distinctOp(sc);

    }

    private static void distinctOp(JavaSparkContext sc) {
        Tuple2<Integer, String> t5 = new Tuple2<Integer, String>(150001, "US");
        Tuple2<Integer, String> t6 = new Tuple2<Integer, String>(150002, "CN");
        Tuple2<Integer, String> t7 = new Tuple2<Integer, String>(150003, "CN");
        Tuple2<Integer, String> t8 = new Tuple2<Integer, String>(150004, "IN");
        JavaRDD<Tuple2<Integer, String>> rdd2 = sc.parallelize(Arrays.asList(t5, t6, t7, t8));
        rdd2.map(new Function<Tuple2<Integer, String>, String>() {
            @Override
            public String call(Tuple2<Integer, String> v1) throws Exception {
                return v1._2;
            }
        }).distinct().foreach(new VoidFunction<String>() {
            @Override
            public void call(String s) throws Exception {
                System.out.println(s);
            }
        });
    }

    private static void joinOp(JavaSparkContext sc) {
        Tuple2<Integer, Integer> t1 = new Tuple2<Integer, Integer>(150002, 200);
        Tuple2<Integer, Integer> t3 = new Tuple2<Integer, Integer>(150001, 400);
        Tuple2<Integer, Integer> t2 = new Tuple2<Integer, Integer>(150003, 300);
        Tuple2<Integer, Integer> t4 = new Tuple2<Integer, Integer>(150004, 100);
        JavaRDD<Tuple2<Integer, Integer>> rdd = sc.parallelize(Arrays.asList(t1, t2, t3, t4));

        Tuple2<Integer, String> t5 = new Tuple2<Integer, String>(150001, "US");
        Tuple2<Integer, String> t6 = new Tuple2<Integer, String>(150002, "CN");
        Tuple2<Integer, String> t7 = new Tuple2<Integer, String>(150003, "CN");
        Tuple2<Integer, String> t8 = new Tuple2<Integer, String>(150004, "IN");
        JavaRDD<Tuple2<Integer, String>> rdd2 = sc.parallelize(Arrays.asList(t5, t6, t7, t8));

        JavaPairRDD<Integer, Integer> rddPair = rdd.mapToPair(new PairFunction<Tuple2<Integer, Integer>, Integer, Integer>() {
            @Override
            public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> tup) throws Exception {
                return new Tuple2<Integer, Integer>(tup._1, tup._2);
            }
        });
        JavaPairRDD<Integer, String> rdd2Pair = rdd2.mapToPair(new PairFunction<Tuple2<Integer, String>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<Integer, String> tup) throws Exception {
                return new Tuple2<Integer, String>(tup._1, tup._2);
            }
        });

        rddPair.join(rdd2Pair).foreach(new VoidFunction<Tuple2<Integer, Tuple2<Integer, String>>>() {
            @Override
            public void call(Tuple2<Integer, Tuple2<Integer, String>> tuple) throws Exception {
                //主播编号
                Integer uid = tuple._1;
                //大区和音浪收入信息
                Tuple2<Integer, String> tu = tuple._2();
                System.out.println(uid + "\t" + tu._1 + "\t" + tu._2);
            }
        });

    }

    private static void sortByKeyOp(JavaSparkContext sc) {
        //(150001, 400), (150002, 200), (15003, 300), (15004, 100)
        Tuple2<Integer, Integer> t1 = new Tuple2<Integer, Integer>(150002, 200);
        Tuple2<Integer, Integer> t3 = new Tuple2<Integer, Integer>(150001, 400);
        Tuple2<Integer, Integer> t2 = new Tuple2<Integer, Integer>(150003, 300);
        Tuple2<Integer, Integer> t4 = new Tuple2<Integer, Integer>(150004, 100);
        JavaRDD<Tuple2<Integer, Integer>> rdd = sc.parallelize(Arrays.asList(t1, t2, t3, t4));



        /*
        rdd.mapToPair(new PairFunction<Tuple2<Integer, Integer>, Integer, Integer>() {
            @Override
            public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> tup) throws Exception {
                return new Tuple2<Integer, Integer>(tup._2, tup._1);
            }
        }).sortByKey(false).foreach(new VoidFunction<Tuple2<Integer, Integer>>() {
            @Override
            public void call(Tuple2<Integer, Integer> tup) throws Exception {
                System.out.println(tup);
            }
        });
         */
        rdd.sortBy(new Function<Tuple2<Integer, Integer>, Integer>() {
            @Override
            public Integer call(Tuple2<Integer, Integer> v1) throws Exception {
                return v1._2();
            }
        }, false, 1).foreach(new VoidFunction<Tuple2<Integer, Integer>>() {
            @Override
            public void call(Tuple2<Integer, Integer> tup) throws Exception {
                System.out.println(tup);
            }
        });
    }


    private static void reduceByKeyOp(JavaSparkContext sc) {
        Tuple2<Integer, String> t1 = new Tuple2<Integer, String>(150001, "US");
        Tuple2<Integer, String> t2 = new Tuple2<Integer, String>(150002, "CN");
        Tuple2<Integer, String> t3 = new Tuple2<Integer, String>(150003, "CN");
        Tuple2<Integer, String> t4 = new Tuple2<Integer, String>(150004, "IN");
        JavaRDD<Tuple2<Integer, String>> rdd = sc.parallelize(Arrays.asList(t1, t2, t3, t4));

        rdd.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> tup) throws Exception {
                return new Tuple2<String, Integer>(tup._2, 1);
            }
        }).reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer integer, Integer integer2) throws Exception {
                return integer + integer2;
            }
        }).foreach(new VoidFunction<Tuple2<String, Integer>>() {
            @Override
            public void call(Tuple2<String, Integer> tuple) throws Exception {
                System.out.println(tuple);
            }
        });
    }

    private static void groupByKeyOp2(JavaSparkContext sc) {
        Tuple3<Integer, String, String> t1 = new Tuple3<Integer, String, String>(150001, "US", "male");
        Tuple3<Integer, String, String> t2 = new Tuple3<Integer, String, String>(150002, "CN", "female");
        Tuple3<Integer, String, String> t3 = new Tuple3<Integer, String, String>(150003, "CN", "female");
        Tuple3<Integer, String, String> t4 = new Tuple3<Integer, String, String>(150004, "IN", "male");
        JavaRDD<Tuple3<Integer, String, String>> rdd = sc.parallelize(Arrays.asList(t1, t2, t3, t4));

        rdd.mapToPair(new PairFunction<Tuple3<Integer, String, String>, String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Tuple2<String, Integer>> call(Tuple3<Integer, String, String> tup) throws Exception {
                return new Tuple2<String, Tuple2<String, Integer>>(tup._2(), new Tuple2<String, Integer>(tup._3(), tup._1()));
            }
        }).groupByKey().foreach(new VoidFunction<Tuple2<String, Iterable<Tuple2<String, Integer>>>>() {
            @Override
            public void call(Tuple2<String, Iterable<Tuple2<String, Integer>>> tup) throws Exception {
                //大区信息
                String area = tup._1;
                System.out.print(area + ":");
                //获取同一个大区所有用户对应的性别信息
                Iterable<Tuple2<String, Integer>> it = tup._2;
                for (Tuple2<String, Integer> tu : it) {
                    System.out.print("<" + tu._2 + "," + tu._1 + ">");
                }
                System.out.println();

            }
        });
    }

    private static void groupByKeyOp(JavaSparkContext sc) {
        Tuple2<Integer, String> t1 = new Tuple2<Integer, String>(150001, "US");
        Tuple2<Integer, String> t2 = new Tuple2<Integer, String>(150002, "CN");
        Tuple2<Integer, String> t3 = new Tuple2<Integer, String>(150003, "CN");
        Tuple2<Integer, String> t4 = new Tuple2<Integer, String>(150004, "IN");
        JavaRDD<Tuple2<Integer, String>> rdd = sc.parallelize(Arrays.asList(t1, t2, t3, t4));
        rdd.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> tup) throws Exception {
                return new Tuple2<String, Integer>(tup._2, tup._1);
            }
        }).groupByKey().foreach(new VoidFunction<Tuple2<String, Iterable<Integer>>>() {
            @Override
            public void call(Tuple2<String, Iterable<Integer>> tup) throws Exception {
                //获取大区信息
                String area = tup._1;
                System.out.print(area + ":");
                Iterable<Integer> it = tup._2;
                for (Integer uid : it) {
                    System.out.print(uid + " ");
                }
                System.out.println();
            }
        });
    }

    private static void flatMapOp(JavaSparkContext sc) {
        JavaRDD<String> rdd = sc.parallelize(Arrays.asList("good good study", "day day up"));
        rdd.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String line) throws Exception {
                return Arrays.asList(line.split(" ")).iterator();
            }
        }).foreach(new VoidFunction<String>() {
            @Override
            public void call(String word) throws Exception {
                System.out.println(word);
            }
        });
    }

    private static void filterOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        rdd.filter(new Function<Integer, Boolean>() {
            @Override
            public Boolean call(Integer integer) throws Exception {
                return integer % 2 == 0;
            }
        }).foreach(new VoidFunction<Integer>() {
            @Override
            public void call(Integer integer) throws Exception {
                System.out.println(integer);
            }
        });
    }

    private static void mapOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        rdd.map(new Function<Integer, Integer>() {
            @Override
            public Integer call(Integer integer) throws Exception {
                return integer * 2;
            }
        }).foreach(new VoidFunction<Integer>() {
            @Override
            public void call(Integer integer) throws Exception {
                System.out.println(integer);
            }
        });
    }

    public static JavaSparkContext getSparkContext() {
        SparkConf conf = new SparkConf();
        conf.setAppName("TransformationOpJava").setMaster("local");
        return new JavaSparkContext(conf);
    }


}

四、常用Action介绍

1. 官方文档

RDD Programming Guide - Spark 2.4.3 Documentation (apache.org)

 2. 常用action算子

算子       介绍
reduce将RDD中的所有元素进行聚合操作
collect将RDD中的所有元素拉取到本地客户端(Driver)
take(n)获取RDD中前n个元素
count获取RDD元素总数
saveAsTextFile将RDD中元素保存在文件中,对每个元素调用toStrin
countByKey对每个key对应的值进行count计数
foreach便利RDD中的每个元素

3. Scala代码

package com.sanqian.scala

import org.apache.spark.{SparkConf, SparkContext}

/**
 * 需求:Action实战
 * reduce:聚合计算
 * collect:获取元素集合
 * take(n):获取前n个元素
 * count:获取元素总数
 * saveAsTextFile:保存文件
 * countByKey:统计相同的key出现多少次
 * foreach:迭代遍历元素
 * Created by
 */
object ActionOpScala {
  def main(args: Array[String]): Unit = {
    val sc = getSparkContext
    //reduce:聚合计算
    //    reduceOp(sc)
    //collect:获取元素集合
    //    collectOp(sc)
    //take(n):获取前n个元素
//    takeOp(sc)
    //count:获取元素总数
//    countOp(sc)
    //saveAsTextFile:保存文件
//    saveAsTextFileOp(sc)
    //countByKey:统计相同的key出现多少次
//    countByKeyOp(sc)
    //foreach:迭代遍历元素
//    foreachOp(sc)
  }
  private def foreachOp(sc: SparkContext) = {
    val rdd = sc.parallelize(Array(1,2,3,4,5))
    rdd.foreach(println(_))
  }

  private def countByKeyOp(sc: SparkContext) = {
    val rdd = sc.parallelize(Array(("A",1001),("B",1002),("A",1003),("C",1004)))
    val res = rdd.countByKey()
    for((k, v) <- res){
      println(k + "," + v)
    }
  }

  private def saveAsTextFileOp(sc: SparkContext) = {
    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5))
    //指定HDFS的路径信息即可,需要指定一个不存在的目录
    rdd.saveAsTextFile("hdfs://bigdata01:9000/out0104")
  }

  private def countOp(sc: SparkContext) = {
    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5))
    //如果想要获取几条数据,查看一下数据格式,可以使用take(n)
    val count = rdd.count()
    print(count)
  }


  private def takeOp(sc: SparkContext) = {
    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5))
    //如果想要获取几条数据,查看一下数据格式,可以使用take(n)
    val res = rdd.take(2)
    for (i <- res) {
      println(i)
    }
  }

  private def collectOp(sc: SparkContext) = {
    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5))
    //注意:如果RDD中数据量过大,不建议使用collect,因为最终的数据会返回给Driver进程所在的节点
    //如果想要获取几条数据,查看一下数据格式,可以使用take(n)
    val res = rdd.collect()
    for (i <- res) {
      println(i)
    }
  }

  private def reduceOp(sc: SparkContext) = {

    val rdd = sc.parallelize(Array(1, 2, 3, 4, 5))
    val num = rdd.reduce(_ + _)
    println(num)
  }

  private def getSparkContext = {
    val conf = new SparkConf()
    conf.setAppName("ActionOpScala").setMaster("local[*]")
    new SparkContext(conf)
  }
}

4. Java代码

package com.sanqian.java;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
import sun.awt.windows.WPrinterJob;

import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.Set;

public class ActionOpJava {
    public static void main(String[] args) {
        JavaSparkContext sc = getSparkContext();
        //reduce:聚合计算
//        reduceOp(sc);
        //collect:获取元素集合
//        collectOp(sc);
        //take(n):获取前n个元素
//        takeOp(sc);
        //count:获取元素总数
//        countOp(sc);
        //saveAsTextFile:保存文件
//        saveAsTextFileOp(sc);
        //countByKey:统计相同的key出现多少次
//        countByKeyOp(sc);
        //foreach:迭代遍历元素
        foreachOp(sc);

    }

    public static void foreachOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        rdd.foreach(new VoidFunction<Integer>() {
            @Override
            public void call(Integer integer) throws Exception {
                System.out.println(integer);
            }
        });
    }


    public static void countByKeyOp(JavaSparkContext sc) {
        Tuple2<String, Integer> t1 = new Tuple2<String, Integer>("A", 1001);
        Tuple2<String, Integer> t2 = new Tuple2<String, Integer>("B", 1002);
        Tuple2<String, Integer> t3 = new Tuple2<String, Integer>("A", 1003);
        Tuple2<String, Integer> t4 = new Tuple2<String, Integer>("C", 1004);
        JavaRDD<Tuple2<String, Integer>> rdd = sc.parallelize(Arrays.asList(t1, t2, t3, t4));
        Map<String, Long> res = rdd.mapToPair(new PairFunction<Tuple2<String, Integer>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<String, Integer> tup) throws Exception {
                return new Tuple2<String, Integer>(tup._1, tup._2);
            }
        }).countByKey();

        for (Map.Entry<String, Long> entry : res.entrySet()) {
            System.out.println(entry.getKey() + "," + entry.getValue());
        }

    }

    public static void countOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        long num = rdd.count();
        System.out.println(num);
    }

    public static void saveAsTextFileOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        rdd.saveAsTextFile("hdfs://bigdata01:9000/output0104");
    }

    public static void takeOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        List<Integer> res = rdd.take(2);
        for (Integer i : res) {
            System.out.println(i);
        }
    }

    public static void collectOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        List<Integer> res = rdd.collect();
        for (Integer i : res) {
            System.out.println(i);
        }
    }

    public static void reduceOp(JavaSparkContext sc) {
        JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
        Integer num = rdd.reduce(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
        System.out.println(num);
    }

    public static JavaSparkContext getSparkContext() {
        SparkConf conf = new SparkConf();
        conf.setAppName("ActionOpJava").setMaster("local[*]");
        return new JavaSparkContext(conf);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值