状态压缩DP POJ3254 && POJ1185

总结:

之前对状压只是一知半解的,今天认真的把学了一遍。

个人发现:状压DP和基础DP的区别并不大,状压只是巧妙的利用了很多位运算,本质和普通DP没什么区别。

换句话说,状压DP只是在状态的表示上利用了2进制,在判断一些状态的时候利用了位运算。

接下里同样是要想如何状态转移方程。感觉状压熟悉之后,利用二进制并不难,难的还是如何推出题目子结构性质和转移方程怎么来。

由于状压有不少位运算,所以强烈建议,对位运算还不熟练的同学先学一下位运算。

比如 x&(x<<1) 就是判断x转化为二进制之后,有没有相邻的1;x&=(x-1)可以把x的最右边的第一个1去掉;

x^(1<<(j-1)) 可以把x的右数第j为取反等等。

简单解释一下:

1) x<<1 把x左移以为,x&(x<<1) 即将x与它左移一位之后的二进制数 逐位进行 “与”操作

如果有相邻的1 1,它左移一位之后,肯定会出现 1&1的情况,那么x&(x<<1)的结果就不会是0.

2) x&=(x-1) 假设k=x-1;如果x(二进制形式)的最后一位是1,那k与x的差别就在于一个1一个是0,再逐位相与,0&1=0,所以最右边的这个1就被去掉了,如果x的最后以为是0,x-1,这个0必然要向高位借一个1,如果它最近的高位还是0,继续向前借,直到找到一个1,比如11000-1 = 10111;两者相与,11000&10011=10000。结果也是去掉了最右边的第一个1。

3) x^(1<<(j-1)) 1<<j 的结果显然是 10000... 即1后面j-1个0;异或的话可以这样理解:0异或一个东西等于它本身,1异或一个东西等于它取反;所以就把x的第右数j位取反了。

如果位运算也看不懂,几乎无从谈学状压。

一篇很好的介绍位运算的博客

两个入门的题目:

POJ 3254 Corn Fields

【题目大意】一个矩阵里有很多格子,每个格子有两种状态,能放牧和不能放牧,准许放牧用1表示,不准许用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相邻。问有多少种放牛方案

【分析】 先假设所有的格子都是可以放牧的,1表示这个格子放牧,0表示这个格子不放牧;所以每一行的状态就能用一个十进制数来表示,这个十进制数分解上01..这样的二进制数后就代表了这一行放或不放的状态。进一步分析:第i行的格子能放牧,要在上下左右都不相邻,左右不相邻可以先预处理出来,st[]数组保存所有没有1相邻的二进制状态;上下不相邻:对于第i行的,只需要考虑第 i-1 行 对它的影响。假设 t 是第 i 行的一个合法状态,那 在t状态下,所有合法 的 i-1 的状态数目就是 t状态下的方案数。继续看下面
【状态表示】 dp [i] [j] 表示 第 i行的状态为j 时,前 i 行 的方案数
【转移方程】 dp [i] [j] = Σ ( dp[i-1] [k] )  k为i-1行的所有与i行的合法状态
最后答案就是 Σ dp[n] [t]  t为第n行所有合法状态

对代码第59行的解释:
mp[i] += 1<<(m-j)  ,直接从二进制的角度看这句话;mp[i]一开始等于0,二进制为0000...,+=了一个2^(m-j)次方之后,即加了一个二进制为1000..(1后面(m-j)个0)的数;就变成了0001000...,即从左数第j个位置变成了1;实际效果就是:输入11100 变成 00011.
实际判断中,判断状态x能不能放到这一行,只需要 mp[i] & x ,如果等于0就说明能放。

【代码】
<span style="font-size:12px;">/* ***********************************************
Author        :angon
************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a));
#define LL long long
#define maxn 1005
#define mod 100000000
/*
inline int read()
{
    int s=0;
    char ch=getchar();
    for(; ch<'0'||ch>'9'; ch=getchar());
    for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';
    return s;
}
inline void print(int x)
{
    if(!x)return;
    print(x/10);
    putchar(x%10+'0');
}
*/

int mp[13],st[1<<13],m,n;
int dp[13][1<<13];
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    while(~scann(n,m))
    {
        mst(mp,0);
        mst(st,0);
        mst(dp,0);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                int x;scan(x);
                if(!x) mp[i] += 1<<(m-j);
            }
        }
        int k=0;
        for(int i=0;i<(1<<m);i++)  //预处理,把1不相邻的状态处理出来
        {
            if( (i&(i<<1)) == 0)
                st[k++]=i;
        }
        for(int i=0;i<k;i++)   //初始化第一行的状态
        {
            if( (mp[1]&st[i]) ==0)
                dp[1][i]=1;
        }
        for(int i=2;i<=n;i++)
        {
            for(int j=0;j<k;j++)   //枚举第i行的状态
            {
                if(mp[i]&st[j]) continue;
                for(int f=0;f<k;f++)   //枚举i-1行的状态
                {
                    if(mp[i-1]&st[f]) continue;
                    if( (st[j]&st[f])==0)   //如果竖着也不相邻
                        dp[i][j] += dp[i-1][f];
                }
            }
        }
        int ans=0;
        for(int i=0;i<k;i++)
            ans = (ans+dp[n][i])%mod;
        printf("%d\n",ans);
    }
    return 0;
}</span><span style="font-size:14px;">
</span>

POJ 1185 炮兵阵地

这题和上题相识;如果上题感觉不错,可以先自己想一下

【分析】 第 i 行的 状态只受 第i-1行和第i-2行的约束;发现,并不严格具有最优子结构性质,n行的格子,第 k 行达到最大的状态,并不一定是第n行最大状态的子状态。所以还是要枚举出第n行所有可能的状态在比较出最大的。
【状态表示】dp[i] [j] [k]  表示 第 i 行状态为 k 第 i-1 行状态为j 是前i行的炮兵总数
【转移方程】dp[i] [k] [t] = max ( dp[i][k][t], dp[i-1][j][k] + num[t]) ; num[t]是预处理出来的状态t中1的个数
解释:第i行状态为t,i-1行状态为k时前i的炮兵数,等于前i-1行各合法状态  + num[t] 最大 的那个值

做了上一题之后我发现,二进制的利用并不是掣肘我的地方,比如 判断不能有两个1的距离小于2,num数组的实现,竖直方向判断等。最优子结构的思考和状态的转移才是难点。

【代码】

/* ***********************************************
Author        :angon
************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a));
#define LL long long
#define maxn 1005
#define mod 100000007
/*
inline int read()
{
    int s=0;
    char ch=getchar();
    for(; ch<'0'||ch>'9'; ch=getchar());
    for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';
    return s;
}
inline void print(int x)
{
    if(!x)return;
    print(x/10);
    putchar(x%10+'0');
}
*/

int mp[105],st[70],num[70],dp[105][70][70],m,n;
bool ok(int x)
{
    if(x&(x<<1) || x&(x<<2))
        return false;
    return true;
}

int top;
void init()
{
    top=0;
    for(int i=0;i<(1<<m);i++)
        if(ok(i))
            st[++top]=i;
    for(int i=1;i<=top;i++)
    {
        int cnt=0;
        int t=st[i];
        while(t)
        {
            cnt++;
            t&=(t-1);
        }
        num[i]=cnt;
        if(!(mp[1]&st[i]))
            dp[1][1][i]=num[i];  //初始化第1行
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    while(~scann(n,m))
    {
        char s[11];
        mst(mp,0);
        for(int i=1;i<=n;i++)
        {
            scanf("%s",s+1);
            for(int j=1;j<=m;j++)
            {
                if(s[j]=='H')
                    mp[i] += 1<<(m-j);
            }
        }
        mst(dp,-1);
        init();
        for(int i=1;i<=n;i++)
        {
            for(int t=1;t<=top;t++) //枚举第i行
            {
                if(mp[i]&st[t]) continue;
                for(int j=1;j<=top;j++)  //枚举第i-2行
                {
                    if(st[t]&st[j]) continue;
                    for(int k=1;k<=top;k++)  //枚举第i-1行
                    {
                        if(st[t]&st[k]) continue;
                        if(dp[i-1][j][k]==-1) continue;  //如果上一个状态不存在
                        dp[i][k][t]=max(dp[i][k][t],dp[i-1][j][k]+num[t]);
                    }
                }
            }
        }
        int ans=0;
        for(int k=1;k<=top;k++)
            for(int t=1;t<=top;t++)
                ans=max(ans,dp[n][k][t]);
        printf("%d\n",ans);
    }


    return 0;
}











  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本
题目描述 给出一个$n\times m$的矩阵每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值