POJ 1273 && 3469 【最大流】

本文提供了一个简洁高效的最大流算法模板,包括裸最大流和通过转化问题为最大流问题的两种情况。通过具体代码实现展示了如何构造图、添加边以及进行最大流计算。

1273 

裸最大流

【史上最优模版】

/* ***********************************************
Author        :angon

************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
#define lld %I64d
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%I64d%I64d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a))
#define LL long long
#define N 1005
#define mod 1000000007
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}

const int MAXN=210;
const int MAXM=410;
const int INF=0x3f3f3f3f;

struct Node
{
    int to,next,cap;
}edge[MAXM];
int tol;
int head[MAXN];
int gap[MAXN],dis[MAXN],pre[MAXN],cur[MAXN];
void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w,int rw=0)  //单向边的话不用管rw
{
    edge[tol].to=v;edge[tol].cap=w;edge[tol].next=head[u];head[u]=tol++;
    edge[tol].to=u;edge[tol].cap=rw;edge[tol].next=head[v];head[v]=tol++;
}

int sap(int start,int End,int nodenum)  //源点、汇点、点的个数
{
    memset(dis,0,sizeof(dis));
    memset(gap,0,sizeof(gap));
    memcpy(cur,head,sizeof(head));
    int u=pre[start]=start,maxflow=0,aug=-1;
    gap[0]=nodenum;
    while(dis[start]<nodenum)
    {
        loop:
        for(int &i=cur[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(edge[i].cap&&dis[u]==dis[v]+1)
            {
                if(aug==-1||aug>edge[i].cap)
                    aug=edge[i].cap;
                pre[v]=u;
                u=v;
                if(v==End)
                {
                    maxflow+=aug;
                    for(u=pre[u];v!=start;v=u,u=pre[u])
                    {
                        edge[cur[u]].cap-=aug;
                        edge[cur[u]^1].cap+=aug;
                    }
                    aug=-1;
                }
                goto loop;
            }
        }
        int mindis=nodenum;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(edge[i].cap&&mindis>dis[v])
            {
                cur[u]=i;
                mindis=dis[v];
            }
        }
        if((--gap[dis[u]])==0)break;
        gap[dis[u]=mindis+1]++;
        u=pre[u];
    }
    return maxflow;
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n,m,u,v,w;
    while(~scann(n,m))
    {
        init();
        REP(i,0,n)
        {
            scann(u,v); scan(w);
            addedge(u,v,w);
        }
        printf("%d\n",sap(1,m,m));
    }


    return 0;
}

3469

转化为最大流

先找两个没出现的点s,t 作为源点和汇点

连n条 <s,i>的边 

n条<i,t>的边

m*2条<a , b>,<b , a>边

既是求s,t的最大流

【模版大法好】

/* ***********************************************
Author        :angon

************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
#define lld %I64d
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%I64d%I64d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a))
#define LL long long
#define N 1005
#define mod 1000000007
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}

const int MAXN=20010;
const int MAXM=2000005;
const int INF=0x3f3f3f3f;

struct Node
{
    int to,next,cap;
}edge[MAXM];
int tol;
int head[MAXN];
int gap[MAXN],dis[MAXN],pre[MAXN],cur[MAXN];
void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w,int rw=0)  //单向边的话不用管rw
{
    edge[tol].to=v;edge[tol].cap=w;edge[tol].next=head[u];head[u]=tol++;
    edge[tol].to=u;edge[tol].cap=rw;edge[tol].next=head[v];head[v]=tol++;
}

int sap(int start,int End,int nodenum)  //源点、汇点、点的个数
{
    memset(dis,0,sizeof(dis));
    memset(gap,0,sizeof(gap));
    memcpy(cur,head,sizeof(head));
    int u=pre[start]=start,maxflow=0,aug=-1;
    gap[0]=nodenum;
    while(dis[start]<nodenum)
    {
        loop:
        for(int &i=cur[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(edge[i].cap&&dis[u]==dis[v]+1)
            {
                if(aug==-1||aug>edge[i].cap)
                    aug=edge[i].cap;
                pre[v]=u;
                u=v;
                if(v==End)
                {
                    maxflow+=aug;
                    for(u=pre[u];v!=start;v=u,u=pre[u])
                    {
                        edge[cur[u]].cap-=aug;
                        edge[cur[u]^1].cap+=aug;
                    }
                    aug=-1;
                }
                goto loop;
            }
        }
        int mindis=nodenum;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(edge[i].cap&&mindis>dis[v])
            {
                cur[u]=i;
                mindis=dis[v];
            }
        }
        if((--gap[dis[u]])==0)break;
        gap[dis[u]=mindis+1]++;
        u=pre[u];
    }
    return maxflow;
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n,m,u,v,w;
    while(~scann(n,m))
    {
        int s = n + 1, t = n + 2;
        init();
        REPP(i,1,n)
        {
            scann(u,v);
            addedge(s,i,u);
            addedge(i,t,v);
        }
        REPP(i,1,m)
        {
            scann(u,v); scan(w);
            addedge(u,v,w);
            addedge(v,u,w);
        }
        printf("%d\n",sap(s,t,n+2));
    }


    return 0;
}


基于考虑神经滞后、动作滞后和最优侧向加速度的横向单点预瞄驾驶员模型(Simulink仿真实现)内容概要:本文介绍了一个基于考虑神经滞后、动作滞后和最优侧向加速度的横向单点预瞄驾驶员模型,并通过Simulink进行仿真实现。该模型旨在模拟驾驶员在车辆操控过程中的生理与反应延迟特性,结合预瞄机制优化车辆横向控制性能,提升驾驶行为仿真精度。文档同时提及该资源属于一系列科研仿真项目的一部分,涵盖智能优化算法、机器学习、路径规划、电力系统管理等多个技术领域,重点突出MATLAB/Simulink在系统建模与仿真中的应用。; 适合人群:具备一定控制理论基础和MATLAB/Simulink使用经验的高校学生、科研人员及从事自动驾驶、车辆动力学研究的工程技术人员。; 使用场景及目标:①用于研究驾驶员行为建模与车辆横向控制策略设计;②支持智能驾驶系统仿真验证;③作为高校课程设计、科研项目或竞赛(如亚太杯数学建模竞赛)的技术参考;④推动控制算法在实际交通系统中的应用与优化。; 阅读建议:建议读者结合提供的网盘资源,下载完整代码与模型文件,边运行Simulink仿真边理解模型结构,重点关注神经滞后、动作滞后与预瞄点设置对控制效果的影响,同时可拓展至多目标优化与联合仿真场景以增强研究深度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值