USACO Section 3.3 A Game(dp)

A Game
IOI'96 - Day 1

Consider the following two-player game played with a sequence of N positive integers (2 <= N <= 100) laid onto a game board. Player 1 starts the game. The players move alternately by selecting a number from either the left or the right end of the sequence. That number is then deleted from the board, and its value is added to the score of the player who selected it. A player wins if his sum is greater than his opponents.

Write a program that implements the optimal strategy. The optimal strategy yields maximum points when playing against the "best possible" opponent. Your program must further implement an optimal strategy for player 2.

PROGRAM NAME: game1

INPUT FORMAT

Line 1:N, the size of the board
Line 2-etc:N integers in the range (1..200) that are the contents of the game board, from left to right

SAMPLE INPUT (file game1.in)

6
4 7 2 9
5 2

OUTPUT FORMAT

Two space-separated integers on a line: the score of Player 1 followed by the score of Player 2.

SAMPLE OUTPUT (file game1.out)

18 11
题意:两人博弈,有 n 数排一排,每次只能从两端取,求两个人最终的数字和。
分析:动态规划
方法一:d[i][j] 表示先手从 i 到 j 的最大数字和。
d[i][j]=sum[i][j] - min(d[i+1][j] , d[i][j-1]);
方法二:d[i][j]
(j-i+1)%2==0 d[i][j] 表示先手最大数字和,于是d[i][j]=max(d[i+1][j]+a[i],d[i][j-1]+a[j]);
(j-i+1)%2==1 d[i][j] 表示后手最大数字和,于是d[i][j]=min(d[i+1][j],d[i][j-1]);

方法一:对自己挺无语的直接写了O(n^3)
View Code
/*
  ID: dizzy_l1
  LANG: C++
  TASK: game1
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define MAXN 110

using namespace std;

int d[MAXN][MAXN],sum[MAXN][MAXN],a[MAXN];

int main()
{
    freopen("game1.in","r",stdin);
    freopen("game1.out","w",stdout);
    int n,i,j,k;
    while(scanf("%d",&n)==1)
    {
        for(i=1; i<=n; i++) scanf("%d",&a[i]);
        memset(d,0,sizeof(d));
        memset(sum,0,sizeof(sum));
        for(i=1; i<=n; i++)
        {
            d[i][i]=a[i];
            for(j=i; j<=n; j++)
            {
                for(k=i; k<=j; k++)
                {
                    sum[i][j]+=a[k];
                }
            }
        }
        for(k=1; k<=n; k++)
        {
            for(i=1; i<=n; i++)
            {
                for(j=i+k; j<=n; j++)
                {
                    d[i][j]=sum[i][j]-min(d[i+1][j],d[i][j-1]);
                }
            }

        }
        printf("%d %d\n",d[1][n],sum[1][n]-d[1][n]);
    }
    return 0;
}

优化:

View Code

 

方法二:

View Code
/*
  ID: dizzy_l1
  LANG: C++
  TASK: game1
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define MAXN 110

using namespace std;

int d[MAXN][MAXN],a[MAXN];

int main()
{
    freopen("game1.in","r",stdin);
    freopen("game1.out","w",stdout);
    int n,i,j,sum;
    while(scanf("%d",&n)==1)
    {
        memset(d,0,sizeof(d));
        for(i=1; i<=n; i++) scanf("%d",&a[i]);
        sum=0;
        for(i=1; i<=n; i++) sum+=a[i];
        for(j=1; j<n; j++)
        {
            for(i=1; i<=n; i++)
            {
                if((j+1)%2==0) d[i][i+j]=max(d[i+1][i+j]+a[i],d[i][i+j-1]+a[i+j]);
                else d[i][i+j]=min(d[i+1][i+j],d[i][i+j-1]);
            }
        }
        int ans1,ans2;
        if(n%2==0)
        {
            ans1=d[1][n];
            ans2=sum-ans1;
        }
        else
        {
            ans2=d[1][n];
            ans1=sum-ans2;
        }
        printf("%d %d\n",ans1,ans2);
    }
    return 0;
}

转载于:https://www.cnblogs.com/zhourongqing/archive/2012/09/15/2686036.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值