周志华老师西瓜书读书笔记——第一章:绪论

1. 基本术语
中文English
数据集data set
样本sample
属性空间attribute space
样本空间sample space
训练集training set
标记label
回归regression
正类positive class
反类negative class
聚类clustering
监督学习supervised learning
泛化generalization

监督学习:分类和回归,训练数据有标记信息

无监督学习:聚类,训练数据没有标记信息

泛化能力:指训练得到的模型适用于新的样本

2. 假设空间

http://home.ustc.edu.cn/~angus_huang/figure1.png

有点类似决策树

3. 归纳偏好

同样的训练集可能训练出不同的模型,它们在面对新的样本时输出不一样,这是由于算法的“偏好”不同导致的。

一个机器学习算法的好坏很大程度上受“归纳偏好”影响。"奥卡姆剃刀"是一种帮助建立"正确"偏好的原则。

奥卡姆剃刀(Occam’s razor):若有多个假设与观察一致,选最简单的那个

对于二分类问题且所有的二值函数f按均匀分布对误差求和:
∑ f E o t e ( L a ∣ X , f ) = ∑ f ∑ h ∑ x ∈ X − X P ( x ) I ( h ( x ) ≠ f ( x ) ) P ( h ∣ X , L a ) = ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) ∑ f I ( h ( x ) ≠ f ( x ) ) = ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) 1 2 2 ∣ χ ∣ = 1 2 2 ∣ X ∣ ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) \begin{aligned} \sum_{f} E_{o t e}\left(\mathfrak{L}_{a} | X, f\right) &=\sum_{f} \sum_{h} \sum_{x \in \mathcal{X}-X} P(\boldsymbol{x}) \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) P\left(h | X, \mathfrak{L}_{a}\right) \\ &=\sum_{\boldsymbol{x} \in \mathcal{X}-X} P(\boldsymbol{x}) \sum_{h} P\left(h | X, \mathfrak{L}_{a}\right) \sum_{f} \mathbb{I}(h(\boldsymbol{x}) \neq f(\boldsymbol{x})) \\ &=\sum_{\boldsymbol{x} \in \mathcal{X}-X} P(\boldsymbol{x}) \sum_{h} P\left(h | X, \mathfrak{L}_{a}\right) \frac{1}{2} 2^{|\chi|} \\ &=\frac{1}{2} 2^{|\mathcal{X}|} \sum_{x \in \mathcal{X}-X} P(\boldsymbol{x}) \sum_{h} P\left(h | X, \mathfrak{L}_{a}\right) \end{aligned} fEote(LaX,f)=fhxXXP(x)I(h(x)̸=f(x))P(hX,La)=xXXP(x)hP(hX,La)fI(h(x)̸=f(x))=xXXP(x)hP(hX,La)212χ=212XxXXP(x)hP(hX,La)

二值函数f共有 2 ∣ X ∣ 2^{|\mathcal{X}|} 2X个,故 ∑ f I ( h ( x ) ≠ f ( x ) ) = 1 2 2 ∣ X ∣ \sum_{f}\mathbb{I}(h(x)\neq f(x))=\frac 12 2^{|\mathcal{X}|} fI(h(x)̸=f(x))=212X

结果与 L a \mathfrak{L}_{a} La无关!!!与学习算法无关!!!

没有免费的午餐定理(NFL定理):学习算法的误差与学习算法的聪明程度无关!

前提是:所有问题出现的概率相同

4. 机器学习发展过程中几大思想
  • 符号学习主义:决策树,基于逻辑的学习

    基于逻辑的学习如:归纳逻辑程序设计(ILP):一阶谓词逻辑

    PS:数理逻辑有涉及

  • 从样例中学习:

    早期是死记硬背式学习,信息的存储与检索

    后期发展成为神经网络

著名的BP算法:实际上是一个反馈机制,大致过程如下:

  1. 将训练集输入,得到输出;
  2. 将输出结果与实际结果比较,算出误差;
  3. 误差由输出端传入,反向传播分摊个各层各个单元;
  4. 根据分摊的误差修正个单元的权值,使误差取极小值
  5. 重复此过程
  • 统计学习?

    我感觉神经网络应该也能算一种统计学习

    大规模的数据训练出来的算法?

5. 机器学习&数据挖掘

数据挖掘=数据管理+数据分析

数据管理 ⟶ \longrightarrow 数据库技术

数据分析 ⟶ \longrightarrow 机器学习和统计学

6.习题

1.1 画出树状图较为简单

1.2 共有 4* 3 * 3 +1 = 37种假设

1.3 噪声产生在哪个属性上就对该属性“相信”少一点,即分配的权值少一点

1.4
∑ f E o t e ( L a ∣ X , f ) = ∑ f ∑ h ∑ x ∈ X − X P ( x ) ℓ ( h ( x ) , f ( x ) ) P ( h ∣ X , L a ) = ∑ f ∑ x ∈ X − X P ( x ) ℓ ( h ( x ) , f ( x ) ) \sum_{f}E_{o t e}\left(\mathfrak{L}_{a} | X, f\right)=\sum_{f}\sum_{h} \sum_{\boldsymbol{x} \in \mathcal{X}-X} P(\boldsymbol{x}) \ell(h(\boldsymbol{x}), f(\boldsymbol{x})) P\left(h | X, \mathfrak{L}_{a}\right)\\ =\sum_{f}\sum_{\boldsymbol{x} \in \mathcal{X}-X} P(\boldsymbol{x}) \ell(h(\boldsymbol{x}), f(\boldsymbol{x}))\\ fEote(LaX,f)=fhxXXP(x)(h(x),f(x))P(hX,La)=fxXXP(x)(h(x),f(x))
结果与 L a \mathfrak{L}_{a} La无关

Q&A
  1. 训练集,测试集,验证集各自的英文名是哪些?为什么要划分为这几个数据集?划分比例一般是多少?

    training set; testing set; validation set;

    划分的目的自然是为了训练出来的模型误差更小。

    使用训练集进行训练,验证集进行评估和误差计算并根据误差做出调整;最后使用测试集测试调整出的模型。举一反三,反复测试方能使模型取得更好的效果。

    划分比例一般是:训练集50%;测试集和验证集都是25%

  2. “监督学习”和“无监督学习”的区别在哪里?是否所有学习方式可以归为这两种学习方式中的一种?

    区别在于训练数据有没有标记信息。

    监督学习是人为的给数据打上标记,比如标明好瓜和坏瓜;

    而非监督学习是让机器做到将相似的样本分为一类,不人为提供标记作为标准。

    监督学习有训练集,测试集,验证集,模型是通过测试集和验证集训练出来的;

    非监督只提供一组数据,让机器从中找规律分类

    半监督学习:大量未标记数据和少量标记数据

    强化学习:一种"试错"的学习方法,每次给出对机器行为的评价信号,让其自我修正。

  3. “泛化”是什么意思?它和过拟合之间的关系是什么?

    泛:宽,广泛。泛化就是指用有限的数据得到的模型适用于更宽一点的数据,即模型适用于新的样本。

    过拟合粗俗的理解就是:训练的模型完全为训练样本服务,和训练样本更贴近,但是和整个样本的分布相差反而大一点。

    过拟合表示模型的泛化能力变弱,不适用于新的样本

  4. “奥卡姆剃刀”原则是什么?它和“泛化”之间有什么关联吗?

    奥卡姆剃刀原则简单的理解为最简单原则,如果多个假设与观察一致,选择最简单的

    从自然规律的角度看:奥卡姆剃刀原则一般能选出泛化能力更强的模型;

    但是不排除有些刁钻的样本使得与简单的模型相差甚远,导致模型泛化能力减弱。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

angushuang17

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值