目录
1.1引言
1.2基本术语
1.3假设空间
1.4归纳偏好
1.5发展历程
1.6应用现状
1.7阅读材料
一、基本术语
1、 一个样本的属性,如西瓜的色泽、根蒂、敲声
2、 属性上的取值,称为属性值。如色泽是青绿的还是乌黑的。
3、 属性张成的空间称为属性空间,或样本空间,或输入空间。例如我们以色泽、根蒂、敲声作为西瓜的三个属性,构造出一个三维的空间,称为属性空间。
4、 一般令 D={x1,x2,…,xm} 表示包含m个西瓜的数据集。而每一个西瓜则有 xi= {xi1, xi2, xi3} 三个属性。
5、 分类、回归、聚类的区别。
分类:表示我们预测的是离散值,如好瓜与坏瓜。
回归:表示我们预测的是连续值,如西瓜成熟度为0.97、0.37。
聚类:所要划分的类是我们未知的。
6、 监督学习 与 无监督学习:分类和回归是前者的代表,而聚类则是后者的代表。
二、假设空间
归纳:从特殊到一般的泛化过程
演绎:从一般到特殊的特化过程
版本空间:可能有多个假设与训练集的一致,即存在着一个与训练集一致的“假设集合”,我们称之为版本空间。
三、归纳偏好
NFL定理(No Free Lunch Theorem):无论算法LA多聪明,LB多笨拙,但是他们的期望性是一样的。
证明如下: