西瓜书(周志华)__笔记(第一章 绪论)

本文深入探讨了机器学习的基本术语,如属性、属性值、属性空间等,详细解释了分类、回归、聚类的区别,以及监督学习与无监督学习的概念。同时,介绍了假设空间和归纳偏好的理论,包括版本空间和NFL定理,为读者提供了全面的机器学习入门知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.1引言
1.2基本术语
1.3假设空间
1.4归纳偏好
1.5发展历程
1.6应用现状
1.7阅读材料

一、基本术语

1、 一个样本的属性,如西瓜的色泽、根蒂、敲声
2、 属性上的取值,称为属性值。如色泽是青绿的还是乌黑的。
3、 属性张成的空间称为属性空间,或样本空间,或输入空间。例如我们以色泽、根蒂、敲声作为西瓜的三个属性,构造出一个三维的空间,称为属性空间。
4、 一般令 D={x1,x2,…,xm} 表示包含m个西瓜的数据集。而每一个西瓜则有 xi= {xi1, xi2, xi3} 三个属性。

5、 分类、回归、聚类的区别。
分类:表示我们预测的是离散值,如好瓜与坏瓜。
回归:表示我们预测的是连续值,如西瓜成熟度为0.97、0.37。
聚类:所要划分的类是我们未知的。

6、 监督学习无监督学习:分类和回归是前者的代表,而聚类则是后者的代表。

二、假设空间

归纳:从特殊到一般的泛化过程
演绎:从一般到特殊的特化过程

版本空间:可能有多个假设与训练集的一致,即存在着一个与训练集一致的“假设集合”,我们称之为版本空间。

三、归纳偏好

NFL定理(No Free Lunch Theorem):无论算法LA多聪明,LB多笨拙,但是他们的期望性是一样的。
证明如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值