bzoj2287【POJ Challenge】消失之物*

本文解析了BZOJ2287【POJChallenge】消失之物的背包问题,针对n和m不超过2000的情况,详细阐述了如何计算除特定物品外,使用其余物品填满指定容量背包的方案数。通过动态规划方法,建立了f[n][j]和F[i][j]的关系,给出了具体的实现代码。
摘要由CSDN通过智能技术生成

bzoj2287【POJ Challenge】消失之物

题意:

给出n,m,求用除了第i(1≤i≤n)个之外的物品填满容量为j(1≤j≤m)的背包的方法数。n,m≤2000。

题解:

令f[n][j]为所有物品可用填满j的方案数,F[i][j]为题目所求,则当j<a[i]时F[i][j]=f[n][j],否则F[i][j]=f[n][j]-F[i][j-a[i]]。

代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 #define inc(i,j,k) for(int i=j;i<=k;i++)
 5 #define maxn 2001
 6 using namespace std;
 7 
 8 inline int read(){
 9     char ch=getchar(); int f=1,x=0;
10     while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
11     while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
12     return f*x;
13 }
14 int f[maxn],c[maxn][maxn],n,m,a[maxn];
15 int main(){
16     n=read(); m=read(); inc(i,1,n)a[i]=read(); f[0]=1;
17     inc(i,1,n)for(int j=m;j>=a[i];j--)f[j]=(f[j]+f[j-a[i]])%10;
18     inc(i,1,n){
19         c[i][0]=1;
20         inc(j,1,m){if(j<a[i])c[i][j]=f[j];else c[i][j]=(f[j]+10-c[i][j-a[i]])%10; printf("%d",c[i][j]);}
21         puts("");
22     }
23     return 0;
24 }

 

20160905

转载于:https://www.cnblogs.com/YuanZiming/p/5861768.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值