题目:
一开始在数轴0位置,有P概率往右走,Q概率往左走,问第一次到达位置n的期望步数
特别的,在0位置有100%几率到达1。(有点像装备强化的事件,或者排位上分?)
思路:
用模拟与数学推导分别算一次结果对拍
假设P=0.75 程序模拟10000000次的均值如下(大数定理,但肯定有误差)
n | ans |
1 | 1 |
2 | 2.6662 |
3 | 4.55596 |
4 | 6.51928 |
设E(x)为从x开始,第一次到n的期望步数,答案就是E(0)
方程为
解释就是有P的概率状态转移至x+1 Q概率转移至x-1 花费为1步
在1的时候有P概率转移到2花费为1,Q的概率转移到1(0下一步肯定是1),花费为2步
开始推导:
设E(x)-E(x+1)=Ax
注意到A1=E1-E2
注意到En=0,那么E1=Ax的前n-1项和 1<=x<=n-1
对An进行求和得到Sn如下
代入P=0.75,Q=0.25
而我们想要的的
n | ans | 数学公式 |
1 | 1 | 1 |
2 | 2.6662 | 5/3+1 =2.666666 |
3 | 4.55596 | 32/9+1 =4.555555 |
4 | 6.51928 | 149/27+1=6.51852 |
因此验证此公式是正确的
注意:以上公式是P!=Q的时候成立
当P=Q=1/2时可得E(0)=n^2