[期望] 看完一维随机游走想到的题目

题目:

一开始在数轴0位置,有P概率往右走,Q概率往左走,问第一次到达位置n的期望步数

特别的,在0位置有100%几率到达1。(有点像装备强化的事件,或者排位上分?)

思路:

用模拟与数学推导分别算一次结果对拍

假设P=0.75  程序模拟10000000次的均值如下(大数定理,但肯定有误差)

nans
11
22.6662
34.55596
46.51928


设E(x)为从x开始,第一次到n的期望步数,答案就是E(0)

方程为  

\\ E(x)=P(E(x+1)+1)+Q(E(x-1)+1),x>=2 \newline E(1)=P(E(2)+1)+Q(E(1)+2),x=1

解释就是有P的概率状态转移至x+1  Q概率转移至x-1  花费为1步

在1的时候有P概率转移到2花费为1,Q的概率转移到1(0下一步肯定是1),花费为2步

开始推导:

E(1)=P(E(2)+1)+Q(E(1)+2),x=1\\ =>E(1)-QE(1)=P*E(2)+P+2Q\\ =>E(1)-E(2)=\frac{1+Q}{P}

E(x)=P(E(x+1)+1)+Q(E(x-1)+1),x>=2 \newline =>E(x)=PE(x+1)+QE(x-1)+1 \\ =>(P+Q)E(x)=PE(x+1)+QE(x-1)+1\\ =>PE(x)-PE(x+1)=QE(x-1)-QE(x)+1\\ =>P(E(x)-E(x+1))=Q(E(x-1)-E(x))+1

设E(x)-E(x+1)=Ax

PA_{x}=QA_{x-1}+1\\ =>P(A_x-\frac{1}{P-Q})=Q(A_{x-1}-\frac{1}{P-Q}) \\ =>A_x=(A_1-\frac{1}{P-Q})(\frac{Q}{P})^{n-1}+\frac{1}{P-Q}

注意到A1=E1-E2

A_x=(A_1-\frac{1}{P-Q})(\frac{Q}{P})^{n-1}+\frac{1}{P-Q}\\ =>A_x=(\frac{1+Q}{P} -\frac{1}{P-Q})(\frac{Q}{P})^{n-1}+\frac{1}{P-Q}\\ =>A_x=\frac{ (P-Q)(1+Q)-P }{P(P-Q)}*(\frac{Q}{P})^{n-1}+\frac{1}{P-Q}\\ =>A_x=\frac{PQ-Q^2-Q}{P(P-Q)}*...+...\\ =>A_x=\frac{-2Q^2}{P(P-Q)}*...+...\\ =>A_x=\frac{-2(1-P)^2}{P(2P-1)}*(\frac{1-P}{P})^{n-1}+\frac{1}{P-Q}\\ =>A_x=\frac{2P-2}{2P-1}*(\frac{1-P}{P})^{n}+\frac{1}{2P-1}\\

注意到En=0,那么E1=Ax的前n-1项和 1<=x<=n-1

\\ A_1=E_1-E_2\\ A_2=E_2-E_3\\ ...\\ A_{n-1}=E_{n-1}-E_n

对An进行求和得到Sn如下

S_n=-2(\frac{Q}{P-Q})^2*(1-(\frac{Q}{P})^n)+\frac{n}{P-Q}

代入P=0.75,Q=0.25

S_n=-2*\frac{1}{4}*(1-(\frac{1}{3})^n)+2n\\ =>2n-\frac{3^n-1}{2*3^n}

而我们想要的的E(0)=S_{n-1}+1

nans数学公式
111
22.66625/3+1     =2.666666
34.5559632/9+1   =4.555555
46.51928149/27+1=6.51852

因此验证此公式是正确的

 

注意:以上公式是P!=Q的时候成立

当P=Q=1/2时可得E(0)=n^2

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值