背包算法(一)-01背包-史上最详细解答

背包算法(一)-01背包-史上最详细解答



1. 题目

  • 问题描述:有n件物品和容量为m的背包,给出i件物品的重量以及价值value,还有数量number,求解让装入背包的物品重量不超过背包容量W,且价值V最大 。
  • 特点:这是最简单的背包问题,特点是每个物品只有一件供你选择放还是不放。

2. 分析

2.1 状态表示

一般用dp数组来计算动态规划问题,从以下两个方面对动态规划问题进行表示

  • 集合

    • v集合:物品价值
    • w集合:物品重量
    • 从前i个物品里面选取总重量<=j的所有物品的选法
  • 属性

    • max
    • min
    • count

本题属性是属于求最大价值,为max

2.2 状态计算

对于0和1背包的问题,我们计算的只是两个状态,即对于第i个物品选择放进去或者不放进去的问题。

  • 选择放进去
    表示在上一个物品的状态的时候,我的当前背包重量j需要减去当前这个物品的重量w[i],并且整个背包的价值需要加上当前这个物品的价值v[i],则状态方程为:
dp[i][j] = dp[i-1][j-w[i]] + v[i]
  • 选择不放进去
    实际上如果选择不放进去的时候,表示需要减去的w[i]和需要加上的v[i]都为0选择不放进去的状态方程则为:
# dp[i][j] = dp[i-1][j-0] + 0
dp[i][j] = dp[i-1][j]

由此我们可以得到状态转移方程:

dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j])

3. 实现

根据上面的状态转移方程我们可以得到01背包的二维解法:

def bag_two_2_0and1(items, weight):
    # 数据是从1开始的
    data_len = len(items)
    row = data_len + 1
    col = weight + 1

    # 生成二维数组
    # 原生的Python可以这么写:
    # dp = [[0] * col for _ in range(row)]
    # 使用numpy生成一个dp数组
    dp = np.array([0] * (row * col)).reshape(row, col)
    for i in range(1, row):
        if i == data_len:
            break
        item = items[i]
        v = item.get("value")
        w = item.get("weight")
        for j in range(1, col):
            if j >= w:
                no_input = dp[i-1][j]
                yes_input = dp[i-1][j-w] + v
                dp[i][j] = max(yes_input, no_input)
            else:
                dp[i][j] = dp[i-1][j]
    return dp[data_len-1][weight]

4. 优化

可以看的出来i这个变量其实就是表示“第i个”的一个递增序列,实际的这个背包的当前的状态只有重量(w)和价值(v)
根据刚才的状态方程:

# 不放进去
dp[i][j]=dp[i-1][j]

# 放进去
dp[i][j]=dp[i-1][j-w[i]] + v[i]

观察两个状态方程,可以看到对于背包重量的状态ji无关,因此可以把上述方程简化为:

# 不放进去时候,重量不变,价值不变
dp[j] = dp[j] 

# 放进去的时候,背包重量和价值的变化
dp[j] = dp[j-w[i]] + v[i]

因此可以得到状态转移方程为:

dp[j] = max(dp[j-w[i]] + v[i], dp[j])

根据上述的状态转移方程来实现代码:

def bag_one_dim_0and1(items, weight):
    # 数据是从1开始的
    data_len = len(items)
    row = data_len + 1
    col = weight + 1

    # 生成一维数组
    # 原生的Python可以这么写:
    # dp = [[0] * col]
    # 使用numpy生成一个dp数组
    dp = np.array([0] * col)
    for i in range(1, row):
        if i == data_len:
            break
        item = items[i]
        v = item.get("value")
        w = item.get("weight")
        for j in range(weight, w, -1):
            dp[j] = max(dp[j-w]+v, dp[j])
    return dp[weight]

【1】此处为何倒序遍历呢?
首先我们观察优化后和优化前的状态转移方程:

# 优化之前
dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j])

# 优化之后
dp[j] = max(dp[j-w[i]] + v[i], dp[j])

因此实际上优化后的状态转移方程是:

dp[j](第i轮的新值) = max(dp[j-w[i]] + v[i](第i-1轮的旧值), dp[j](第i-1轮的旧值))

优化后的状态转移方程实际上就是用最新的值把上一轮的值覆盖掉,所以可以在一个一维数组中完成状态转移,而且得保证:这一轮状态只能是由上一轮的状态推出来的。
为什么需要逆序遍历,此处如果从背包问题的物理操作去解释不好解释,简单的从数学上去理解就是:

我们这个j-w[i]是做减法的,而这个j又是数组的下标,做减法之后就表示是之前的数据。由于需要用新的值把旧的值进行覆盖,就需要保证在此数据是没有被改动过的,也就是原封不动第i-1轮的数据与当前第i轮的数据进行比较。因此此处如果是顺序的话,这个数据就已经是第i轮更新的数据与第i轮的数据进行比较了。

5. 测试

我们给出01背包的测试数据

{
	'items': [{
		'number': 1,
		'weight': 49,
		'value': 241
	}, {
		'number': 1,
		'weight': 25,
		'value': 724
	}, {
		'number': 1,
		'weight': 91,
		'value': 780
	}, {
		'number': 1,
		'weight': 76,
		'value': 824
	}, {
		'number': 1,
		'weight': 92,
		'value': 968
	}, {
		'number': 1,
		'weight': 53,
		'value': 276
	}, {
		'number': 1,
		'weight': 6,
		'value': 492
	}, {
		'number': 1,
		'weight': 53,
		'value': 745
	}, {
		'number': 1,
		'weight': 62,
		'value': 136
	}, {
		'number': 1,
		'weight': 94,
		'value': 568
	}],
	'total_weight': 200,
	'things_num': 10
}

输出:

3008

下一章:背包问题(二)-完全背包-史上最详细解答

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值