驱动导入
要在Python中连接和操作Neo4j数据库,我们可以使用py2neo用于连接和操作Neo4j图数据库的高级客户端库。
它提供了面向对象的接口,使得Python程序员能够方便地与 Neo4j 数据库进行交互。
执行步骤
1、创建节点与关系(Relationship)
2、执行 Cypher 查询
3、图数据建模
4、数据导入导出等操作
安装py2neo
pip install py2neo
安装Neo4j数据库
需要有一个正在运行的 Neo4j 数据库,可以本地安装,也可以连接远程服务器(例如Docker部署neo4j)。
连接Neo4j
from py2neo import Graph
# 本地默认配置(bolt://localhost:7687)
graph = Graph("bolt://localhost:7687", auth=("neo4j", "your_password"))
创建节点(Node)和关系(Relationship)
from py2neo import Node, Relationship
# 创建节点
zs= Node("Person", name="张三")
ls = Node("Person", name="李四")
# 创建关系
knows = Relationship(zs, "knows", ls)
# 将节点和关系写入数据库
graph.create(zs | ls | knows)
执行 Cypher 查询
# 查询所有 Person 节点
results = graph.run("MATCH (p:Person) RETURN p.name").data()
for result in results:
print(result["p.name"])
# .run(query):执行任意 Cypher 查询
# .data():将查询结果以字典形式返回
使用 NodeMatcher
查找节点
matcher = NodeMatcher(graph)
# 查找标签为 Person 且 name 为 Alice 的节点
zs = matcher.match("Person", name="张三").first()
print(zs)
# .match(label, **属性):匹配标签和属性
# .first():返回第一个匹配项
更新节点属性
matcher = NodeMatcher(graph)
# 查找标签为 Person 且 name 为 Alice 的节点
zs = matcher.match("Person", name="张三").first()
zs["age"] = 30
graph.push(zs) # 将更改推送到数据库
删除节点和关系
matcher = NodeMatcher(graph)
# 查找标签为 Person 且 name 为 Alice 的节点
zs = matcher.match("Person", name="张三").first()
graph.delete(zs)
#graph.delete_all() 删除所有内容(慎用)
graph.delete_all()
创建图模型
from py2neo.ogm import GraphObject, Property
class Person(GraphObject):
__primarykey__ = "name"
name = Property()
age = Property()
完成例子代码:
from py2neo import Graph, Node, Relationship, NodeMatcher
# 本地默认配置(bolt://localhost:7687)
graph = Graph("bolt://192.168.219.128:7687", auth=("neo4j", "test@123456"))
# 创建节点
zs= Node("Person", name="张三")
ls = Node("Person", name="李四")
# 创建关系
knows = Relationship(zs, "knows", ls)
#将节点和关系写入数据库
graph.create(zs | ls | knows)
matcher = NodeMatcher(graph)
# 查找标签为 Person 且 name 为 Alice 的节点
zs = matcher.match("Person", name="张三").first()
zs["age"] = 30
graph.push(zs) # 将更改推送到数据库
# 查找标签为 Person 且 name 为 Alice 的节点
zs = matcher.match("Person", name="张三").first()
print("=======执行完成=============")
常用类和方法简表
类 / 方法 | 说明 |
Graph() | 连接数据库 |
Node() | 创建节点 |
Relationship() | 创建关系 |
graph.create() | 向数据库写入节点/关系 |
graph.run() | 执行 Cypher 查询 |
NodeMatcher() | 查找节点 |
graph.delete() | 删除节点或关系 |
graph.push() | 更新节点/关系属性 |
graph.pull() | 拉取数据库中最新属性 |
py2neo适用场景
1、图数据库建模:社交网络、知识图谱、推荐系统
2、复杂关系查询:比如“某人认识谁的朋友”
3、Cypher 脚本管理和自动化操作
4、与机器学习/NLP 集成使用图结构建模数据
与其他Neo4j-Python驱动对比
驱动 | 特点 |
---|---|
py2neo | 高级封装,易于上手,面向对象 |
neo4j (官方驱动) | 底层操作,性能好但略繁琐 |
neomodel | Django 风格 ORM,适合模型驱动开发 |
操作小结
功能 | 方法 |
连接数据库 | Graph(...) |
创建节点 | Node(...) |
创建关系 | Relationship(...) |
插入数据 | graph.create() |
查找节点 | NodeMatcher(graph).match() |
执行查询 | graph.run() |
更新属性 | graph.push() |
删除节点关系 | graph.delete() |
清空数据库 | graph.delete_all() |
特别说明:py2neo是一个功能强大、语法友好、支持对象建模的 Neo4j Python 库,特别适合构建图数据库应用和做图结构数据的快速原型开发。