ST算法详解

ST算法详解

Coded by Jelly_Goat.
All rights reserved.

这个主要是说ST表的。
首先了解一下ST表是什么。


先来一个老套的情景带入。
(假设所有的题目都是1s,128ms)
有一天,蒟蒻Jelly_Goat用手(?)
给你出了一套\(n<=1000\)的数据,然后让你输出\(m<=1000\)次最小值。
你说了,那不就直接暴力吗?
然后,蒟蒻Jelly不服,又开始用C++出了\(n<=10000\),\(m<=10000\)的数据。
你可能开始疑惑了,那我就线段树吧。
蒟蒻Jelly_Goat非得要卡住你,给你又用python3出了一套\(n<=200000\),\(m<=300000\)的数据。
你说,我还会树状数组然后卡一卡常就过了。
事实上你最后几个测试点已经TLE的一声哭了出来。
于是Jelly不死心,又来了一套\(n<=200000\),\(m<=1000000\)的数据。
你摊一摊手,这可咋整?猫树
于是你发现这个题目,蒟蒻Jelly_Goat并没有在线询问。
于是主角,ST表,登场了。


定义

ST表,又名稀疏表,是一种静态提供\(O(1)\)询问的数据结构。
但是建立这个数据结构的实质是dp倍增思想的结合。

ST表的特性:

st[i][j]表示区间\([i,i+(2^j)-1]\)的M(Max or Min)。

然后我们从特性逆推分析:
既然st[i][j]表示的是上面的含义,那么...\(st[i][j]=M(st[i][j-1],st[i+2^{j-1}][j-1])\)
即劈成两半的原先的区间\(st[i][j-1],st[i+2^{j-1}][j-1]\)是可以推出st[i][j]的。

于是我们现在会明白,为什么st表是dp实现
我们从区间长度=0,即只有一个数的区间推到长度为\(2^{Log2[n]}\)的就可以。
然后因为我们是利用了两个加倍到了一个,所以这是倍增思想
代码已经开源,地址:transport

转载于:https://www.cnblogs.com/jelly123/p/10743599.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值