【题目描述】
FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。【输入格式】
第1行: 输入1个整数:N * 第2..N+1行: 第i+1行为1个整数:A_i
【输出格式】
第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费
【样例输入】
7
1
3
2
4
5
3
9
【样例输出】
3
【样例解释】
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。
离散数列a[i]
f[i][j]表示到第i个节点时,以高度j为标准,大于(小于)j时,支出的最小值
1 #include<iostream> 2 using namespace std; 3 4 const int INF=0x7fffffff; 5 6 int n,ans; 7 int a[2001],b[2001]; 8 int f[2001][2001]; 9 10 int read() 11 { 12 int x=0,f=1;char ch=getchar(); 13 while(ch<'0'||ch>'9'){if(ch=='-')f=-f;ch=getchar();} 14 while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} 15 return x*f; 16 } 17 18 bool cmp(int a,int b){return a>b;} 19 20 int main() 21 { 22 n=read(); 23 for(int i=1;i<=n;i++) 24 { 25 b[i]=a[i]=read(); 26 } 27 sort(b+1,b+n+1); 28 for(int i=1;i<=n;i++) 29 f[i][0]=INF; 30 for(int i=1;i<=n;i++) 31 for(int j=1;j<=n;j++) 32 { 33 int t=f[i-1][j]+abs(b[j]-a[i]); 34 f[i][j]=min(f[i][j-1],t); 35 } 36 ans=f[n][n]; 37 sort(b+1,b+n+1,cmp); 38 for(int i=1;i<=n;i++) 39 for(int j=1;j<=n;j++) 40 { 41 int t=f[i-1][j]+abs(b[j]-a[i]); 42 f[i][j]=min(f[i][j-1],t); 43 } 44 ans=min(ans,f[n][n]); 45 printf("%d",ans); 46 return 0; 47 }