#44. 路面修整
描述
提交
自定义测试
【题目描述】:
FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当上升或下降,也就是说,高度上升与高度下降的路不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, … , A_N 依次描述了每一段路的高度。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, … , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + … + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。
【输入描述】:
第1行: 输入1个整数:N
第2…N+1行: 第i+1行为1个整数:A_i
【输出描述】:
输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费
【样例输入】:
7
1
3
2
4
5
3
9
【样例输出】:
3
【时间限制、数据范围及描述】:
时间:1s 空间:128M
1 <= N <= 2,000
0 <= A_i <= 1,000,000,000
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。
#include <iostream>
#include <cstdio>
#include <cmath>
#define ll long long
using namespace std;
const int maxn = 2009;
const int inf = 0x7fffffff;
int H[maxn], h[maxn], dp[maxn][maxn], g[maxn][maxn], n;
int main() {
scanf("%d",&n);
for(int i = 0; i < n; ++i){
scanf("%d", H + i);
h[i] = H[i];
}
sort(h, h + n);
for(int i = 0; i < n; ++i){
dp[0][i] = abs(H[0] - h[i]);
g[0][i] = i ? min(g[0][i - 1], dp[0][i]) : dp[0][i];
}
for(int i = 1; i < n; i++)
for(int j = 0; j < n; j++) {
dp[i][j] = g[i - 1][j] + abs(H[i] - h[j]);
g[i][j] = j ? min(g[i][j - 1], dp[i][j]) : dp[i][j];
}
int ans = g[n - 1][n - 1];
for(int i = n - 1; ~i; i--)
g[0][i] = i != n - 1 ? min(g[0][i + 1], dp[0][i]) : dp[0][i];
for(int i = 1; i < n; i++)
for(int j = n - 1; ~j; j--) {
dp[i][j] = g[i - 1][j] + abs(H[i] - h[j]);
g[i][j] = j != n - 1 ? min(g[i][j + 1], dp[i][j]) : dp[i][j];
}
cout << min(ans, g[n - 1][0]) << "\n";
return 0;
}