传送门
解析:
短代码神题。如果把我打比赛习惯的头文件去掉,真的是非常短的代码量了。
然而这道题并不是如此简单好想。
思路:
首先一棵树必然有叶子节点,也就是说s[1]s[1]s[1]必须为111,因为我们必然会有一刀能够切断该叶子节点的与其父亲的办法。
而s[n]s[n]s[n]不能为1,因为无论如何切,剩下的联通块都必然会减少节点个数。
对应的,我们切出了一个大小为iii的联通块,那么另一个联通块大小就是n−in-in−i,所以必须满足s[i]==s[n−i]s[i]==s[n-i]s[i]==s[n−i]。
不然,必然有解。
懒得证明了,直接构造出解就能说明有解了。
考虑一条链,链上每个节点要么是菊花树,要么是一个单独节点。(就像斐波那契堆一样)
我们可以通过调整菊花树的大小来满足题意。
具体实现就是我们记录一个nownownow节点,然后在上面连边,如果要求有之前菊花树大小之和的块,我们就将nownownow节点向后移动至刚才的连上的点,继续处理。
这样构造出来的树,就是一个以菊花树构成节点的链。
这样为什么是对的?
我们考虑砍一条边。
这条边要么是菊花树上的边,砍了之后会剩下一个大小为111的联通块,为其叶子节点,和另一个大小为n−1n-1n−1的联通块。
不然这条边就是这条链上的边,砍了之后会剩下左右两个菊花树大小的联通块。
而我们构造菊花树的方法就已经决定了这样必然会构造出大小满足题意的联通块。
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define re register
#define gc getchar
#define pc putchar
#define cs const
inline
int getint(){
re int num=0;
re char c;
re bool f=0;
while(!isdigit(c=gc()))f^=c=='-';num=c^48;
while(isdigit(c=gc()))num=(num<<1)+(num<<3)+(c^48);
return num;
}
inline
void outint(int a){
static char ch[23];
if(a==0)pc('0');
while(a)ch[++ch[0]]=a-a/10*10,a/=10;
while(ch[0])pc(ch[ch[0]--]^48);
}
char s[100005];
int n;
signed main(){
cin>>(s+1);
n=strlen(s+1);
if(s[1]=='0'||s[n]=='1')return puts("-1"),0;
for(int re i=1;i<n;++i)if(s[i]^s[n-i])return puts("-1"),0;
int now=1;
for(int re i=2;i<=n;++i){
outint(now),pc(' '),outint(i),pc('\n');
if(s[i-1]=='1')now=i;
}
return 0;
}